Закон за запазване на механичната енергия

от Уикипедия, свободната енциклопедия
Направо към навигацията Направо към търсенето
Серия статии на тема
Класическа механика
PendulumWithMovableSupport.svg
Импулс  · Сила  · Енергия  · Работа  · Мощност  · Скорост  · Ускорение  · Инерционен момент  · Момент на сила  · Момент на импулса

Законът за запазване на пълната механична енергия е физичен закон и гласи „Механичната енергия на затворена система, в която действат само консервативни вътрешни сили, не се изменя с течение на времето“

Законът за запазване на механичната енергия може да се илюстрира с примера на свободно падащо тяло.

Консервативни сили - Сили, чиято работа не зависи от траекторията, a се определя само от началното и крайното положение на тялото, към което са приложени, се наричат консервативни сили

Нека тяло (материална точка) с маса m се намира на височина h0 от повърхността на Земята (виж чертежа по-долу). Избираме Земята за отправно тяло. За начало на координатната система избираме точката, в която се намира тялото. Оста Х избираме да бъде ортогонална на земната повърхност и насочена надолу. Нека означим с единичния вектор по оста X. Нека пуснем тялото да пада свободно под действието на силата на земното привличане

, където е земното ускорение.

За начален момент избираме момента, в който тялото започва да пада:

.

Нека означим момента на падане с . Тогава функцията х(t), която описва положението на тялото като функция на времето при свободното падане, се задава с формулата

, където (0 < t < t1).

Скоростта на движение се задава с формулата

.

В началния момент от време t0 = 0 скоростта на тялото е

= 0,

съответно кинетичната му енергия в началния момент от време Т(0) = 0, потенциалната му енергия в началния момент от време U(0) = mgh0 и пълната механична енергия в момента = 0 е

Е(0) = Т(0) + U(0) = .

В произволно избран момент от време t' (0 < t' < t1) тялото има координата , равна на числената стойност на пътя s(t), изминат за време t' . В момент от време t' тялото се намира на височина

h' = – s(t'),

големината на скоростта на тялото е

v(t') = gt',

кинетичната му енергия е

,

потенциалната му енергия е

U(t') = mgh' = mg (h' – s(t')).

Пълната механична енергия на тялото в момента от време t' е

E(t') = Т(t') + U(t') = .

В момента на падане тялото има скорост с големина

съответно кинетичната енергия в момента на падане е

.

Потенциалната енергия на тялото в момента на падане е

.

Пълната механична енергия на тялото в момента на падане е

E(t)=Т(t)+U(t)=mgh

Следователно, пълната механична енергия на тялото в произволен момент от време t

Е(t) = T(t) + U(t) = const,

т.е. пълната механична енергия на тялото не зависи от времето. Увеличаването на кинетичната енергия води до намаляване на потенциалната и обратно. Разглеждаме тялото като намиращо се в полето на земното привличане и изолирано от всякакви други въздействия. Така на този конкретен пример проверихме валидността на закона за запазване на механичната енергия – един от основните закони на механиката:

Пълната механична енергия на затворена механична система от тела, между които действат само консервативни сили остава постоянна, т.е. не се мени с времето.

Ако в една затворена система освен консервативни, действат и неконсервативни сили, например сила на триене, тогава пълната механична енергия не се запазва. Ние можем да разглеждаме силата на триене като външна за механичната система. Тогава промяната на механичната енергия Е на системата за интервала от време t2 – t1 (t1 < t2) е равна на работата А, извършена от външните сили за същия интервал от време Е(t1) – Е(t2)= А.

Действието на други (немеханични) сили води до превръщане на механичната енергия в други немеханични видове енергия (например топлинна). В такъв случай е в сила по-общ закон за запазване на енергията:

Във всяка затворена физична система сумата от всички видове енергия остава постоянна, т.е. не се мени с времето.

Вижте също[редактиране | редактиране на кода]