Най-малко общо кратно

от Уикипедия, свободната енциклопедия
Направо към: навигация, търсене

Дадени са две цели числа a и b. Минималното естествено число d (d > 0) такова, че a|d и b|d се нарича най-малко общо кратно (НОК) на a и b.


По-лесно намиране на НОК[редактиране | редактиране на кода]

Напишете числата, на които трябва да получите НОК, отделени със запетаи, зад вертикална черта. Тъй като търсим най-малко общо кратно трябва да намерим най-малкият делител на тези числа. Например: НОК на (24 и 180)

Разлагаме само на прости множители. Т.е. НОК на две числа може да се разгледа като обединение на каноничното им разлагане на прости множители (обратно - НОД се разглежда като сечение). Нека са ни дадени числата a и b, и нека имаме техните разлагания, като и в двете разлагания участват едни и същи прости числа (тези, които се срещат в поне едно от разлаганията на a и b), като за "чуждите" множители се поставя 0-ва степен:


Тогава за НОК (бележим [a,b]) и НОД (бележим (a,b)) имаме:


От последното:


Последното дава ефективен алгоритъм за изчисляването на НОК (чрез пресмятането на НОД, за което имаме ефективен метод - алгоритъма на Евклид). Първоначалният начин изискваше разлагането на прости множители, което няма ефективно алгоритмично решение.