Подмножество

от Уикипедия, свободната енциклопедия
Направо към навигацията Направо към търсенето
Ойлерова диаграма, показваща A като строго подмножество на B, A⊂B.

В математиката, множеството A е подмножество на множеството B (или B е надмножество на A), ако A се съдържа в B. Тоест, всички елементи на A са също и елементи на B. A и B могат и да са равни.

Връзката на подмножеството определя частична подредба. Подмножествата на дадено множество образуват булева алгебра чрез тази връзка, в която могат да се изразяват сечение и обединение.

Определение[редактиране | редактиране на кода]

Ако A и B са множества и всеки елемент от A е също и елемент от B, тогава

  • A е подмножество на B, обозначавано с или еквивалентно
  • B е надмножество на A, обозначавано с .

Ако A е подмножество на B, но A не е равно на B (тоест съществува поне един елемент на B, който не е елемент на A), тогава

  • A е собствено (или строго) подмножество на B, обозначавано с или еквивалентно
  • B е собствено (или строго) надмножество of A, обозначавано с .

За всяка множество S, връзката на инклузия ⊆ е частична подредба върху множеството от всички подмножества на S, определени от . Възможно е и частичната подредба на чрез обратна инклузия, определяйки .

Когато се изразява количествено, A ⊆ B се представя като ∀x(x ∈ A → x ∈ B).[1]

Свойства[редактиране | редактиране на кода]

Формално:
  • Множеството A е подмножество на B тогава и само тогава, когато тяхното обединение е равно на B.
Формално:
Формално:

Източници[редактиране | редактиране на кода]

  1. Rosen, Kenneth H.. Discrete Mathematics and Its Applications. 7. New York, McGraw-Hill, 2012. ISBN 978-0-07-338309-5. с. 119.