Направо към съдържанието

Числен анализ: Разлика между версии

редакция без резюме
Редакция без резюме
Редакция без резюме
 
Линейни системи уравнения възникват в редица технически задачи (напр. електрически вериги), както и при численото решаване на посочените по-горе диференциални уравнения. Методите за решаване на линейни системи уравнения се разделят на две групи: преки (директни) и итерационни. При първите решението се достига чрез определена последователност от краен брой (известен брой) изчислителни операции. Такива са методът на Гаус (метод с елиминиране на променливите), правилото (формулите) на Крамер, разлагане на матрицата по сингулярни стойности, <math>QR</math> разлагане, разлагане на Чолески, симплекс метод и др. За разлика от преките, итерационните методи дават решение след неточно определен брой изчислителни стъпки зависещ от критерия за сходимост и сложността на решаваната система. Стартирайки от зададено предварително предполагаемо решение, итеративният метод формира все по-точни приближени решения на всяка итерация оценявайки качеството на последните чрез подходяща кост функция. Ако има сходимост се достига приблизително до точното решение (теоритично до точното решение се достига след безкраен брой итерации), в противен случай обикновено се достига максималния брой итерации и изчислението се преустановява. По-известни методи от групата са: метод на Нютон, метод на бисекцията, метод на Якоби и др. Такива методи се използват за системи с голям брой уравнения, където преките методи не могат да се използват поради ограничения в изчислителната техника (ограничения свързани с размера на оперативната памет на компютрите).
 
== Интерполация ==
Анонимен потребител