Теорема на Болцано-Вайерщрас (за безкрайните редици): Разлика между версии

от Уикипедия, свободната енциклопедия
Изтрито е съдържание Добавено е съдържание
SieBot (беседа | приноси)
м Робот Добавяне: cy:Theorem Bolzano-Weierstrass
Редакция без резюме
Ред 1: Ред 1:
'''Теоремата на [[Болцано]]-[[Вайерщрас]] (за безкрайните редици)''' гласи, че: Всяка безкрайна и ограничена редица <math>r: \N\to\R</math> притежава сходяща подредица.
'''Теоремата на [[Бернард Болцано|Болцано]]-[[Вайерщрас]] (за безкрайните редици)''' гласи, че: Всяка безкрайна и ограничена редица <math>r: \N\to\R</math> притежава сходяща подредица.


===Доказателство===
===Доказателство===

Версия от 16:53, 24 януари 2008

Теоремата на Болцано-Вайерщрас (за безкрайните редици) гласи, че: Всяка безкрайна и ограничена редица притежава сходяща подредица.

Доказателство

Нека и Ако има точка на сгъстяване , то очевидно .

Да допуснем, че няма точка на сгъстяване. Тогава околност на , такава че съдържа само краен брой членове на .

Тогава обединението е покритие на интервала . От теоремата на Хайне-Борел следва, че има крайно подпокритие състоящо се от краен брои интервали, всеки от които съдържа само краен брой членове на . Но има безброй много членове в интервала , което е противоречие и следователно има точка на сгъстяване. С това теоремата е доказана.

Шаблон:Математика-мъниче