Аеродинамичен профил: Разлика между версии

от Уикипедия, свободната енциклопедия
Изтрито е съдържание Добавено е съдържание
Редакция без резюме
+картинки
Ред 23: Ред 23:


==Математическа обосновка==
==Математическа обосновка==
[[File:EV1A014 (1) cropped.jpg|thumb|right|250px|Автомобил General Motors EV1 (1996) с аеродинамическо съпротивление '''0,19''']]
[[File:TJ-Jeep-Wrangler-X.jpg|thumb|right|250px|Jeep Wrangler TJ (1997-2005) с челно съпротивление '''0,58''']]
[[File:EC-GLO (14029818435).jpg|thumb|right|250px| Cessna 172 с челно съпротивление '''0,0319''']]
Причината за изучаването и създаването на аеродинамични форми се корени в силата създадена от флуида срещу посоката на движение. Необходимо е тя да се преодолява, за да се реализира движението с по-висока скорост. Създаването на тази сила се обяснява с компресирането на флуида като се увеличава налягането му пред тялото при движение, и разреждането на налягането на флуида след движещото се тяло, където се получава понижено налягане. Като пример силата, която трябва да се преодолява от съпротивлението на въздуха при движение на автомобил е
Причината за изучаването и създаването на аеродинамични форми се корени в силата създадена от флуида срещу посоката на движение. Необходимо е тя да се преодолява, за да се реализира движението с по-висока скорост. Създаването на тази сила се обяснява с компресирането на флуида като се увеличава налягането му пред тялото при движение, и разреждането на налягането на флуида след движещото се тяло, където се получава понижено налягане. Като пример силата, която трябва да се преодолява от съпротивлението на въздуха при движение на автомобил е


Ред 30: Ред 33:
* '''<math>\rho</math>''' — е плътността на въздуха;
* '''<math>\rho</math>''' — е плътността на въздуха;
* '''S''' — площта от напречната проекция на автомобила. Нарича се още референтна област. За автомобили и други изследвани предмети се приема предната част на превозното средство. Това не е задължително и не винаги се приема неговото напречно сечение, поради някои специфични особености във формата. За една сфера например се приема '''<math>S = \pi r^2\,</math>''' , а не нейната повърхност '''<math>\!\ 4 \pi r^2</math>''';
* '''S''' — площта от напречната проекция на автомобила. Нарича се още референтна област. За автомобили и други изследвани предмети се приема предната част на превозното средство. Това не е задължително и не винаги се приема неговото напречно сечение, поради някои специфични особености във формата. За една сфера например се приема '''<math>S = \pi r^2\,</math>''' , а не нейната повърхност '''<math>\!\ 4 \pi r^2</math>''';
* '''<math>C_x</math>''' - коефициент на челното аеродинамичното съпротивление ({{lang-en|Drag coefficient}}).
* '''<math>C_x</math>''' - коефициент на челното аеродинамичното съпротивление '''({{lang-en|Drag coefficient}})'''.
* '''V''' - е скоростта на обекта спряма флуида. Силата на въздушното съпротивление много силно зависи от квадрата на [[скорост]]та и в това равенство за намаляване на тази сила при някаква приета постоянна висока скорост може да се променят в някакви граници напречната на движението площ на тялото.
* '''V''' - е скоростта на обекта спряма флуида. Силата на въздушното съпротивление много силно зависи от квадрата на [[скорост]]та и в това равенство за намаляване на тази сила при някаква приета постоянна висока скорост може да се променят в някакви граници напречната на движението площ на тялото.



Версия от 05:41, 3 април 2016

Аеродинамичната форма или Обтекаемата форма е такава, с която се понижава съпротивлението на обтичането на тяло от насрещния поток във въздушна, водна или друга среда с по-голям вискозитет. Постига се чрез намаляване на вихрообразуването и получаването на ламинарен поток на обтичане, като токовите линии на флуида следват конструкцията. Така съпротивлението, създадено чрез налягането върху движещото се тяло е минимално. Обтекаема форма чрез техниката на конструиране и последващи аеродинамични изследвания се прилага при създаване на бързоходни превозни средства - влакове, самолети, ракети, кораби, подводници, локомотиви, автомобили.

Пример за обтекаемост на различни профили

Представа за формата и създаденото от нея съпротивление при движение във флуид, графично може да се покаже с изображенията и оценката в проценти на силата на аеродинамичното съпротивление.

Обтекаема форма Съпротивление на формата Обтекаема форма Съпротивление на формата
0% ~10%
~90% 100%

На практика при създаване на аеродинамична форма конструкторите изграждат конструкция, която да бъде обтичана от ламинарен поток.

Математическа обосновка

Автомобил General Motors EV1 (1996) с аеродинамическо съпротивление 0,19
Jeep Wrangler TJ (1997-2005) с челно съпротивление 0,58
Cessna 172 с челно съпротивление 0,0319

Причината за изучаването и създаването на аеродинамични форми се корени в силата създадена от флуида срещу посоката на движение. Необходимо е тя да се преодолява, за да се реализира движението с по-висока скорост. Създаването на тази сила се обяснява с компресирането на флуида като се увеличава налягането му пред тялото при движение, и разреждането на налягането на флуида след движещото се тяло, където се получава понижено налягане. Като пример силата, която трябва да се преодолява от съпротивлението на въздуха при движение на автомобил е

където:

  • — е плътността на въздуха;
  • S — площта от напречната проекция на автомобила. Нарича се още референтна област. За автомобили и други изследвани предмети се приема предната част на превозното средство. Това не е задължително и не винаги се приема неговото напречно сечение, поради някои специфични особености във формата. За една сфера например се приема , а не нейната повърхност ;
  • - коефициент на челното аеродинамичното съпротивление (Шаблон:Lang-en).
  • V - е скоростта на обекта спряма флуида. Силата на въздушното съпротивление много силно зависи от квадрата на скоростта и в това равенство за намаляване на тази сила при някаква приета постоянна висока скорост може да се променят в някакви граници напречната на движението площ на тялото.

Cx (записва се и като Cd и Cw) е безразмерна величина и зависи изключително от формата на конструкцията и обтекаемостта на движещото се тяло. Другите сили на съпротивление при движение, като например повърхностното триене, са значително по-малки.

Коефициента на челното съпротивление при движение от горното равенство се дефинира като:

=

Коефициентът на челното аеродинамично съпротивление е безразмерно число по-малко от 1. В съвременните конструкции леки автомобили Cx < 0,3. За самолета Cessna 172, например, коефициентът за челно съпротивление при нулева подемна сила е 0,0319, а еквивалентната площ на съпротивлението му е 0,52 m2.

Практическо използване на ефекта

Управляемо увеличаване на челното съпротивление за намаляване на скоростта се прилага при скоростните летателни апарати и влакове с аеродинамични спирачки или наричани още въздушни спирачки. Това са управляеми повърхности разположени върху фюзелажа на самолета или влака. Тяхното задействане рязко увеличава челното съпротивление и намалява скоростта на движение на превозното средство, но то като действие не оказва влияние върху подемната сила на летателния апарат, създавана при движението. В авиацията се използват и друг вид въздушни спирачки разположени върху крилата, т. нар. интерцептори, чието основно действие е намаляването на подемната сила по време на полет. С тях по-ефективно се управлева напречната устойчивост на самолета, а при приземяване с действието си те намаляват възможността от повторно излитане и "подскоци" по пистата, както и подобряват сцеплението на кацащия летателен апарат със земята.

Галерия

Вижте също

Уикипедия разполага с
Портал:Авиация