Хилбертово пространство

от Уикипедия, свободната енциклопедия
Направо към: навигация, търсене

Хилбертово пространство е понятие в математиката обобщаващо Евклидовото пространство. Наречено е на Давид Хилберт, който пръв въвежда концепцията за безкрайномерно Евклидово пространство през 1909 г.

Хилбертовото пространство разширява методите на векторната алгебра от двумерната равнина и тримерното пространство към многомерните пространства.

Ако трябва да го дефинираме с по-строги математически термини, Хилбертовото пространство е векторно пространство, в което разстоянията и ъглите могат да бъдат измерени и, което е пълно. Тоест за всяка редица от вектори на Коши съществува граница в пространството.

Пространствата на Хилберт се използват широко в математиката и физиката. Те са изключително важен инструмент в теорията на частните диференциални уравнения, квантовата механика и обработката на сигнали. Благодарение на тази теория бяха достигнати много успехи в областта на функционалния анализ.

Геометрическата интуиция играе важна роля в много от насоките на Хилбертовото пространство. Елемент от Хилбертово пространство може да бъде еднозначно зададен посредством координатите спрямо ортонормирана координатна система, по аналогия с декартовите координати в равнината. Когато базовата координатна система е безкрайна, това означава че Хилбертовото пространство е безкрайна последователност от квадратни суми. Линейните оператори в Хилбертово пространство са съвсем конкретни обекти. В най-добрите случаи те са трансформации, които разширяват пространството с даден фактор във взаимно перпендикулярни посоки.

Дефиниция и примери[редактиране | edit source]

Пространство на Хилберт е реално или комплексно векторно пространство, което е пълно и,в което модула се определя от скаларното произведение \langle\cdot,\cdot\rangle посредством формулата:

  \|x\| = \sqrt{\langle x,x \rangle} .

Събиране[редактиране | edit source]

Две Хилбертови пространства H1 и H2 могат да бъдат комбинирани в едно общо Хилбертово пространство, наричано директна ортогонална сума и обозначавано като:

H_1\oplus H_2,

състоящо се от множеството от всички подредени двойки (x1, x2) където xi ∈ Hi, i = 1,2, и скаларното произведение

\langle (x_1,x_2), (y_1,y_2)\rangle_{H_1\oplus H_2} = \langle x_1,y_1\rangle_{H_1} + \langle x_2,y_2\rangle_{H_2}.

Най-общо ако Hi е фамилия от Хилбертови пространства индексирани по i ∈ I, тогава директната сума от Hi се означава като:

\bigoplus_{i\in I}H_i

състояща се от множеството от всички индексирани фамилии

x=(x_i\in H_i|i\in I) \in \prod_{i\in I}H_i

от Декартови произведения от Hi, такива че

\sum_{i\in I} \|x_i\|^2 < \infty.

Скаларно произведение се нарича

\langle x, y\rangle = \sum_{i\in I} \langle x_i, y_i\rangle_{H_i}.

Всяко от пространствата Hi е включено като затворено подпространство в директните суми на всички Hi.

Нещо повече, пространствата Hi са взаимно ортогонални.

Източници[редактиране | edit source]


Вижте също[редактиране | edit source]