Косинус

от Уикипедия, свободната енциклопедия
Направо към: навигация, търсене
Графика на косинус

Косинус е тригонометрична функция, означавана с cos φ, където φ е ъгъл.

Дефиниция[редактиране | edit source]

За остър ъгъл в правоъгълен триъгълник косинусът се дефинира като отношението на прилежащия катет към хипотенузата. За обобщен ъгъл с радианна мярка x, чийто връх е в координатното начало, а първото рамо е по абсцисната ос, cos x е абсцисата на точката, в която второто рамо на ъгъла пресича единичната окръжност.


Формули и свойства[редактиране | edit source]

Някои от свойствата на функцията косинус за x ∈ [0, 2π] са:

  • Функцията косинус е четна функция, понеже cos (-x) = cos x.
  • Функцията косинус е периодична функция с период 2π, понеже cos x = cos (x+2).
  • Функцията косинус е ограничена функция - и отгоре от 1, и отдолу от -1.
  • За функцията косинус е изпълнено основното тригонометрично тъждество sin2x + cos2x = 1.
  • Функцията косинус приема положителни стойност за ъгли от I и IV квадрант и отрицателни стойности за ъгли от II и III квадрант.


Косинус на сбор и разлика на два ъгъла[редактиране | edit source]

cos (x + y) = cos x cos y - sin x sin y.
cos (x - y) = cos x cos y + sin x sin y.


Косинус на удвоен ъгъл[редактиране | edit source]

cos 2x = (cos x)2 - (sin x)2.


Сбор и разлика на косинуси[редактиране | edit source]

cos x + cos y = 2 cos 1/2 (x + y) cos 1/2 (x - y).
cos x - cos y = 2 sin 1/2 (y - x) sin 1/2 (x + y).

Графика на функцията[редактиране | edit source]

Графиката на косинуса може да се получи директно от графиката на синуса, като вземем пред вид, че

cos x = sin (π/2 + x).

Следователно графиката на косинуса е синусоида, която се получава от графиката на синуса посредством транслация успоредно на оста Ох в отрицателна посока на разстояние π/2.

Вижте също[редактиране | edit source]