Цяло число

от Уикипедия, свободната енциклопедия
(пренасочване от Цели числа)
Направо към навигацията Направо към търсенето

Целите числа са числова област Z, която се получава чрез разширяване на множеството на естествените числа с изискването операцията изваждане a−b (като обратна операция на събирането) да може да се извършва в него еднозначно за всяка наредена двойка естествени числа (а,b). Освен естествените числа Z съдържа и отрицателните цели числа −1, −2, −3, ..., т.е.

Z = {..., −3, −2, −1, 0, 1, 2, 3, ...}.

Отрицателните числа са въведени в математическа употреба от Михаел Щифел (1487 – 1567) през 1544 г. и от Никола Шюке (1445 – 1500).

Сумата, разликата и произведението две цели числа също са цели числа. Z е безкрайно множество.

Основни свойства на събирането и умножаването на цели числа[редактиране | редактиране на кода]

  • Асоциативен закон относно събирането и умножаването: a + (b + c) = (a + b) + c, a (b c) = (a b) c.
  • Комутативен закон относно събирането и умножаването: a + b = b + a, a b = b a.
  • Съществуване на неутрален елемент: a + 0 = a, a . 1 = a.
  • Съществуване на противоположен елемент −a: a + (−a) = 0.
  • Дистрибутивен закон на умножаването относно събирането: a(b + c) = ab + ac.

На езика на абстрактната алгебра първите пет от изброените свойства на събирането на цели числа показват, че Z е абелова група относно бинарната операция събиране и следователно е и циклична група, тъй като всеки ненулев елемент на Z може да се запише като крайна сума 1 + 1 + = ... + 1 или (−1) + (−1) + ... + (−1). Фактически Z е единствената безкрайна циклична група относно събирането поради това, че всяка безкрайна циклична група е изоморфна на групата {Z, +}.

Z обаче не е група относно умножението, а също не е и поле. Най-малкото поле, съдържащо целите числа, е множеството на рационалните числа Q.

Изброените свойства на целите числа показват, че Z е комутативен пръстен с единица относно събирането и умножаването.

Обикновеното деление не е дефинирано в множеството на целите числа, но е дефинирано т.нар. деление с остатък: За всеки цели числа a и b, b ≠ 0, съществува единствена двойка цели числа q и r, за която a = bq + r и 0 ≤ r < |b|. Тук а е делимо, b – делител, а r – остатък. На тази операция се основава алгоритъмът на Евклид за намиране на най-голям общ делител на две цели числа.

Теоретико-множествени свойства[редактиране | редактиране на кода]

Z е безкрайно, наредено линейно множество, т.е.

... < −3 < −2 < −1 < 0 < 1 < 2 < 3 < ...

Едно цяло число е положително, ако е по-голямо от нулата и отрицателно, ако е по-малко от нулата. По дефиниция нулата не е нито положително, нито отрицателно число.

Наредбата на целите числа е свързана с алгебричните операции по следния начин:

За произволни цели числа a,b, c са в сила неравенствата:

  • Ако a < b и c < d, то a + c < b + d.
  • Ако a > b и c > 0, то a c > b c. (Лесно се доказва, че при c < 0 имаме a c < b c.)

Оттук следва, че Z с горната наредба е нареден пръстен.

Вижте също[редактиране | редактиране на кода]

Криейтив Комънс - Признание - Споделяне на споделеното Лиценз за свободна документация на ГНУ Тази страница частично или изцяло представлява превод на страницата „Целое число“ в Уикипедия на руски. Оригиналният текст, както и този превод, са защитени от Лиценза „Криейтив Комънс - Признание - Споделяне на споделеното“, а за съдържание, създадено преди юни 2009 година — от Лиценза за свободна документация на ГНУ. Прегледайте историята на редакциите на оригиналната страница, както и на преводната страница. Вижте източниците на оригиналната статия, състоянието ѝ при превода и списъка на съавторите.