P-n преход: Разлика между версии

от Уикипедия, свободната енциклопедия
Изтрито е съдържание Добавено е съдържание
Неправилна пунктуация.
+картинки
Ред 1: Ред 1:
[[File:Pn-junction-equilibrium.png|thumb|right|250px|Схема на p-n преход]]
'''P-n преход''' е област в [[полупроводник]], където [[дупчеста проводимост|p-проводимост]]та преминава в [[електронна проводимост|n-проводимост]]. Може да бъде създаден чрез добавяне на различни примеси в един и същ полупроводников [[кристал]] или чрез заваряване на два кристала с различна проводимост. В зависимост от начина на създаване преходът може да бъде рязък (при заваряване или стопяване) или плавен (при [[дифузия]]). Механизмът на действие на повечето полупроводникови елементи се основава на свойствата на P-n прехода - граничната област в полупроводников кристал между две обособени области с различна примесна проводимост.
[[File:PN diode with electrical symbol.svg|thumb|right|250px|Полупроводникова структура и обозначение на диод]]
При нормална температура всички примесни нива са възбудени и концентрацията на основните носители е съответно: P<sub>p</sub> на Р носителите в Р областта и n<sub>n</sub> на n носителите в n областта. Същевременно в двете области има и неосновни токови носители с концентрация P<sub>n</sub> и n<sub>p</sub> като тези носители са с пъти по-малко от основните.
'''P-n преход''' е област на съприкосновение на [[полупроводник]]ци с различна проводимост, където [[дупчеста проводимост|p-проводимост]]та ('''''p''''', {{lang-en|positive}} — положителен) преминава в [[електронна проводимост|n-проводимост]] ('''''n''''', {{lang-en|negative}} — отрицателен). Може да бъде създаден чрез добавяне на различни примеси в един и същ полупроводников [[кристал]] или чрез заваряване на два кристала с различна проводимост. В зависимост от начина на създаване преходът може да бъде рязък (при заваряване или стопяване) или плавен (при [[дифузия]]). Механизмът на действие на повечето полупроводникови елементи се основава на свойствата на P-n прехода - граничната област в полупроводников кристал между две обособени области с различна примесна проводимост.
Този градиент на концентрацията е причина за появата на два дифузионни потока: на P носители от Р към n областта и на n към Р. Резултатният дифузионен ток през P-n прехода е: I<sub>диф.</sub> = I<sub>диф.Р</sub>+I<sub>диф.n</sub>. Проникналите P носители в n областта рекомбинират с електроните, поради което концентрацията на електроните в тази област намалява. Аналогично проникналите в P областта n носители рекомбинират с p носителите.


При нормална температура всички примесни нива са възбудени и концентрацията на основните носители е съответно: '''P<sub>p</sub>''' на '''Р''' носителите в '''Р''' областта и '''n<sub>n</sub>''' на '''n''' носителите в '''n''' областта. Същевременно в двете области има и неосновни токови носители с концентрация '''P<sub>n</sub>''' и '''n<sub>p</sub>''' като тези носители са с пъти по-малко от основните.

Този градиент на концентрацията е причина за появата на два дифузионни потока: на '''P''' носители от '''Р''' към '''n''' областта и на '''n''' към '''Р'''. Резултатният дифузионен ток през P-n прехода е:
::'''I<sub>диф.</sub> = I<sub>диф.Р</sub>+I<sub>диф.n</sub>.'''

Проникналите '''P''' носители в '''n''' областта рекомбинират с електроните, поради което концентрацията на електроните в тази област намалява. Аналогично проникналите в '''P''' областта '''n''' носители рекомбинират с '''p''' носителите.
== Право и обратно свързване на PN преход. ==
== Право и обратно свързване на PN преход. ==
Основното свойство на PN прехода е т. нар. вентилен ефект - преминаване на [[Електрически ток|ток]] само в една посока.
Основното свойство на PN прехода е т. нар. вентилен ефект - преминаване на [[Електрически ток|ток]] само в една посока.
Ред 10: Ред 16:


Ако сменим посоката на напрежението, то тогава бедната на токоносители област става още по-бедна и съпротивлението и се увеличава. Ток почти не протича. Това се нарича '''обратно свързване'''.
Ако сменим посоката на напрежението, то тогава бедната на токоносители област става още по-бедна и съпротивлението и се увеличава. Ток почти не протича. Това се нарича '''обратно свързване'''.

{{Commonscat|PN-junction diagrams}}


[[Категория:Електроника]]
[[Категория:Електроника]]

Версия от 15:32, 17 май 2017

Схема на p-n преход
Полупроводникова структура и обозначение на диод

P-n преход е област на съприкосновение на полупроводникци с различна проводимост, където p-проводимостта (p, Шаблон:Lang-en — положителен) преминава в n-проводимост (n, Шаблон:Lang-en — отрицателен). Може да бъде създаден чрез добавяне на различни примеси в един и същ полупроводников кристал или чрез заваряване на два кристала с различна проводимост. В зависимост от начина на създаване преходът може да бъде рязък (при заваряване или стопяване) или плавен (при дифузия). Механизмът на действие на повечето полупроводникови елементи се основава на свойствата на P-n прехода - граничната област в полупроводников кристал между две обособени области с различна примесна проводимост.

При нормална температура всички примесни нива са възбудени и концентрацията на основните носители е съответно: Pp на Р носителите в Р областта и nn на n носителите в n областта. Същевременно в двете области има и неосновни токови носители с концентрация Pn и np като тези носители са с пъти по-малко от основните.

Този градиент на концентрацията е причина за появата на два дифузионни потока: на P носители от Р към n областта и на n към Р. Резултатният дифузионен ток през P-n прехода е:

Iдиф. = Iдиф.Р+Iдиф.n.

Проникналите P носители в n областта рекомбинират с електроните, поради което концентрацията на електроните в тази област намалява. Аналогично проникналите в P областта n носители рекомбинират с p носителите.

Право и обратно свързване на PN преход.

Основното свойство на PN прехода е т. нар. вентилен ефект - преминаване на ток само в една посока.

Ако подадем напрежение с положителен потенциал към Р съответно и отрицателен към N слоевете, то дупките и електроните започват да се движат към прехода и се елиминират там - протича ток при сравнително малки стойности (0,1 до към 1 V) на напрежението. Това се нарича право свързване.

Ако сменим посоката на напрежението, то тогава бедната на токоносители област става още по-бедна и съпротивлението и се увеличава. Ток почти не протича. Това се нарича обратно свързване.