Тънък течен филм: Разлика между версии

от Уикипедия, свободната енциклопедия
Изтрито е съдържание Добавено е съдържание
м замяна на чужда езикова препратка
м т. е. --> т.е.; козметични промени
Ред 1: Ред 1:
{{без източници}}
{{без източници}}
Понятието '''тънки течни филми''' обединява пенните, емулсионните и умокрящите [[тънки слоеве]], наричани още тънки филми ({{lang-en|thin films}}).
Понятието '''тънки течни филми''' обединява пенните, емулсионните и умокрящите [[тънки слоеве]], наричани още тънки филми ({{lang-en|thin films}}).


Под тънък филм се разбира филм, в който приносът на повърхностните сили е съществен. Характерната дебелина на тези филми е от порядъка на 5-50 nm. Формата им е силно анизодиаметрична, със съотношение дебелина: латерални размери от порядъка на 1:10000 и са по принцип неравновесни образувания. Кинетиката на изтъняване и стабилността на течните филми са определящи фактори за стабилността на емулсии и пени. Теорията на течните филми се използва при моделиране на процесите на флотация, стабилността на хранителни и козметични емулсии и др.
Под тънък филм се разбира филм, в който приносът на повърхностните сили е съществен. Характерната дебелина на тези филми е от порядъка на 5-50 nm. Формата им е силно анизодиаметрична, със съотношение дебелина: латерални размери от порядъка на 1:10000 и са по принцип неравновесни образувания. Кинетиката на изтъняване и стабилността на течните филми са определящи фактори за стабилността на емулсии и пени. Теорията на течните филми се използва при моделиране на процесите на флотация, стабилността на хранителни и козметични емулсии и др.
Ред 10: Ред 10:
== Сили, действащи в тънък течен филм ==
== Сили, действащи в тънък течен филм ==


Формата на тънкия филм се поддържа от [[Повърхностно напрежение|повърхностното напрежение]] <math>\scriptstyle \gamma</math>. Всяко отклонение от първоначалната форма на ципата е свързано с образуване на нова повърхност и загуба на енергия, и при прекратяване на външното въздействие, повърхностното напрежение заличава неравностите и филма възвръща първоначалната си форма. Силата, предизвикваща изглаждането на повърхността се нарича [[капилярно налягане]] p<sub><math>\scriptstyle \gamma</math></sub>.
Формата на тънкия филм се поддържа от [[Повърхностно напрежение|повърхностното напрежение]] <math>\scriptstyle \gamma</math>. Всяко отклонение от първоначалната форма на ципата е свързано с образуване на нова повърхност и загуба на енергия, и при прекратяване на външното въздействие, повърхностното напрежение заличава неравностите и филма възвръща първоначалната си форма. Силата, предизвикваща изглаждането на повърхността се нарича [[капилярно налягане]] p<sub><math>\scriptstyle \gamma</math></sub>.


От друга страна, формата на двете повърхности на филма е подложена на постоянно механично въздействие от страна на [[термичните флуктуации]] в системата. Върху всяка флуидна повърхност, флуктуациите възбуждат вълни, наречени [[капилярни флуктуационни вълни]], деформиращи повърхността.
От друга страна, формата на двете повърхности на филма е подложена на постоянно механично въздействие от страна на [[термичните флуктуации]] в системата. Върху всяка флуидна повърхност, флуктуациите възбуждат вълни, наречени [[капилярни флуктуационни вълни]], деформиращи повърхността.


Във филмите, в посока нормална на повърхността им, действат още [[повърхностни сили|повърхностните сили]], характеризиращи се с разклинящото налягане <math>\scriptstyle \Pi</math>, дефинирано като разлика в налягането върху повърхността на тънкия филм и налягането в хомогенна течност, от която е изтеглен филма и която се намира в равновесие с него. По дефиниция, положително разклинящо налягане води до отблъскване между двете повърхности на филма, а отрицателно - до привличане. При дадени условия, разклинящото налягане свива или удебелява филма до една равновесна дебелина h*, при която <math>\scriptstyle \Pi</math> = 0. Този филм се нарича неравновесен, и се намира в неустойчиво равновесие.
Във филмите, в посока нормална на повърхността им, действат още [[повърхностни сили|повърхностните сили]], характеризиращи се с разклинящото налягане <math>\scriptstyle \Pi</math>, дефинирано като разлика в налягането върху повърхността на тънкия филм и налягането в хомогенна течност, от която е изтеглен филма и която се намира в равновесие с него. По дефиниция, положително разклинящо налягане води до отблъскване между двете повърхности на филма, а отрицателно - до привличане. При дадени условия, разклинящото налягане свива или удебелява филма до една равновесна дебелина h*, при която <math>\scriptstyle \Pi</math> = 0. Този филм се нарича неравновесен, и се намира в неустойчиво равновесие.


За да се стигне до късане на тънкия филм, трябва да има привличане между двете му повърхности, т. е., <math>\scriptstyle \Pi</math> < 0. Това е необходимо, но не и достатъчно условие за нестабилност. При възникване на деформация в тънкия филм (вследствие на флуктуационните сили или външно въздействие), на тази деформация филма реагира не само с появяващото се разклинящото налгане <math>\scriptstyle \delta\Pi</math>, което се стреми да изтъни филма в областта на деформацията, но и с капилярното налягане <math>\scriptstyle \delta</math>p<sub><math>\scriptstyle \gamma</math></sub>, което се стреми обратно, да върне филма в началното състояние. Знакът на сумата на тези две сили определя дали смущението на филма ще замре (<math>\scriptstyle \delta\Pi</math>+<math>\scriptstyle \delta</math>p<sub>sigma</sub> > 0, устойчив филм), или ще се разрастне (<math>\scriptstyle \delta\Pi</math>+<math>\scriptstyle \delta</math>p<sub>sigma</sub> < 0, неустойчив филм). Тези две критериални неравенства са формулирани от българския физикохимик [[Алексей Шелудко]] и полагат основата на съвременното учение за стабилността на тънките течни филми.
За да се стигне до късане на тънкия филм, трябва да има привличане между двете му повърхности, т.е., <math>\scriptstyle \Pi</math> < 0. Това е необходимо, но не и достатъчно условие за нестабилност. При възникване на деформация в тънкия филм (вследствие на флуктуационните сили или външно въздействие), на тази деформация филма реагира не само с появяващото се разклинящото налгане <math>\scriptstyle \delta\Pi</math>, което се стреми да изтъни филма в областта на деформацията, но и с капилярното налягане <math>\scriptstyle \delta</math>p<sub><math>\scriptstyle \gamma</math></sub>, което се стреми обратно, да върне филма в началното състояние. Знакът на сумата на тези две сили определя дали смущението на филма ще замре (<math>\scriptstyle \delta\Pi</math>+<math>\scriptstyle \delta</math>p<sub>sigma</sub> > 0, устойчив филм), или ще се разрастне (<math>\scriptstyle \delta\Pi</math>+<math>\scriptstyle \delta</math>p<sub>sigma</sub> < 0, неустойчив филм). Тези две критериални неравенства са формулирани от българския физикохимик [[Алексей Шелудко]] и полагат основата на съвременното учение за стабилността на тънките течни филми.
{{физикохимия-мъниче}}


[[Категория:Физикохимия]]
[[Категория:Физикохимия]]

{{физикохимия-мъниче}}

Версия от 22:43, 27 септември 2018

Понятието тънки течни филми обединява пенните, емулсионните и умокрящите тънки слоеве, наричани още тънки филми (Шаблон:Lang-en).

Под тънък филм се разбира филм, в който приносът на повърхностните сили е съществен. Характерната дебелина на тези филми е от порядъка на 5-50 nm. Формата им е силно анизодиаметрична, със съотношение дебелина: латерални размери от порядъка на 1:10000 и са по принцип неравновесни образувания. Кинетиката на изтъняване и стабилността на течните филми са определящи фактори за стабилността на емулсии и пени. Теорията на течните филми се използва при моделиране на процесите на флотация, стабилността на хранителни и козметични емулсии и др.

Тънките течни филми се изследват експериментално чрез клетката на Шелудко и везната на Израелашвили.

Като всяка дисперсна система, тънките течни филми са енергетично неизгодни, а следователно и неустойчиви образувания: оптималната форма на течност в отсъствие на външни сили е тази с минимална повърхност, например сферична капка.

Сили, действащи в тънък течен филм

Формата на тънкия филм се поддържа от повърхностното напрежение . Всяко отклонение от първоначалната форма на ципата е свързано с образуване на нова повърхност и загуба на енергия, и при прекратяване на външното въздействие, повърхностното напрежение заличава неравностите и филма възвръща първоначалната си форма. Силата, предизвикваща изглаждането на повърхността се нарича капилярно налягане p.

От друга страна, формата на двете повърхности на филма е подложена на постоянно механично въздействие от страна на термичните флуктуации в системата. Върху всяка флуидна повърхност, флуктуациите възбуждат вълни, наречени капилярни флуктуационни вълни, деформиращи повърхността.

Във филмите, в посока нормална на повърхността им, действат още повърхностните сили, характеризиращи се с разклинящото налягане , дефинирано като разлика в налягането върху повърхността на тънкия филм и налягането в хомогенна течност, от която е изтеглен филма и която се намира в равновесие с него. По дефиниция, положително разклинящо налягане води до отблъскване между двете повърхности на филма, а отрицателно - до привличане. При дадени условия, разклинящото налягане свива или удебелява филма до една равновесна дебелина h*, при която = 0. Този филм се нарича неравновесен, и се намира в неустойчиво равновесие.

За да се стигне до късане на тънкия филм, трябва да има привличане между двете му повърхности, т.е., < 0. Това е необходимо, но не и достатъчно условие за нестабилност. При възникване на деформация в тънкия филм (вследствие на флуктуационните сили или външно въздействие), на тази деформация филма реагира не само с появяващото се разклинящото налгане , което се стреми да изтъни филма в областта на деформацията, но и с капилярното налягане p, което се стреми обратно, да върне филма в началното състояние. Знакът на сумата на тези две сили определя дали смущението на филма ще замре (+psigma > 0, устойчив филм), или ще се разрастне (+psigma < 0, неустойчив филм). Тези две критериални неравенства са формулирани от българския физикохимик Алексей Шелудко и полагат основата на съвременното учение за стабилността на тънките течни филми. Шаблон:Физикохимия-мъниче