Тензор
За информацията в тази статия или раздел не са посочени източници. Въпросната информация може да е непълна, неточна или изцяло невярна. Имайте предвид, че това може да стане причина за изтриването на цялата статия или раздел. |
Тензорите са категория математически обекти. Частни случаи на тензори са числата – скалари, вектори и билинейни форми. Изучаването на тензорите е предмет на тензорния анализ и линейната алгебра.
Най-общо казано тензорът може да се представи във вид на многомерна таблица (броят на множителите съвпада с валентността на тензора).
Тази многомерна таблица е запълнена с числа (компоненти на тензора).
При смяна на базата за сравнение (в частност, координатната система) компонентите на тензора се изменят по определен начин, но при това самият тензор не зависи от избора на координатната система или базата.
Определение
[редактиране | редактиране на кода]Тензор с размерност (ранг) над -мерно векторно пространство е резултатен елемент от тензорно произведение между пространство и спрегнато пространство .
Тензорът (r, s) е пространствено-линейна функция от 1-ва форма на .
Сумата на числата се нарича валентност на тензора. Тензор от ранг се нарича също пъти ко- и пъти контравариантен.
Примери
[редактиране | редактиране на кода]Тензор от ранг 0 – скалар (число).
- Скаларната величина или числото има смисъл само ако е в съотношение с някаква база за сравнение.
Тензор от ранг 1 – вектор (големина, посока)
Тензор от ранг 2 – билинейна форма (dyad) (големина и 2 посоки)
- Двумерен масив от числа (скалари).
Тензор от ранг 3 – триад (големина и 3 посоки)
- Тримерен масив от числа.
- Тензор от ранг (0,0) е скалар;
- Тензор от ранг (1,0) е вектор;
- Тензор от ранг (0,1) е ковектор (контравариантен вектор), тоест
Елемент на пространството V * (или линейна функция на V, 1-форма);
- Тензор от ранг (0,2) е билинейна форма;
- Тензор от ранг (1,1) е линеен оператор.
- Нека да дефинираме обобщена формула за тензорите.
Тензор от тип (s), или валентност (s) се нарича r-пъти контравариантен и (s-r) пъти ковариантен тензор.
Вижте също
[редактиране | редактиране на кода]- An Introduction to Tensors for Students of Physics and Engineering Архив на оригинала от 2010-06-26 в Wayback Machine., released by NASA
- A discussion of the various approaches to teaching tensors, and recommendations of textbooks Архив на оригинала от 2005-11-04 в Wayback Machine.
- A thread discussing basic and in depth definitions as well as various examples
- Introduction to Tensor Calculus and Continuum Mechanics
- A Quick Introduction to Tensor Analysis by R. A. Sharipov.