Стерадиан

от Уикипедия, свободната енциклопедия
Направо към: навигация, търсене
Конусът с образуваща r и основа r2 изрязва от сферата един стерадиан.

Стерадиа́н е единица за измерване на пространствен ъгъл и се означава със символа sr.

Името стерадиан произлиза от гръцкото стереос - пространствен, обеменен и латинското радиус - лъч.

Дефиниция[редактиране | редактиране на кода]

  • Стерадианът е равен на пространствен ъгъл с връх в центъра на сфера, изрязващ на повърхността на сферата площ, равна на площта на квадрат със страна, равна на радиуса на сферата. Цялата сфера е стерадиана.
  • Ако такъв пространствен ъгъл има вид на кръгов конус, то ъгълът при върха му ще бъде 65°32′28″ .
  • Стерадианът, както и радианът, е безразмерна величина, тъй като пространственият ъгъл се измерва с отношението на площта на изрязаната от него част от сферата към квадрата на радиуса на сферата:
.
Независимо от безразмерността му, той се означава със символа "sr", за да се покаже естеството на величината.
Така например, интензитетът на излъчване се измерва във ватове на стерадиан:
.
Сектор от червения конус (1) и синята сферична шапка (2) вписани в сфера.
  • Ако лицето A е равно на r2 и съответства на площта на сферичната шапка (), тогава е изпълнено равенството . Тогава пространственият ъгъл на обикновения конус със сключващ ъгъл е равен на:
  • Поради факта, че повърхността на сферата е 4πr2, дефиницията за стерадиан косвено определя, че в една сфера могат да се впишат точно или това е стерадиана.
  • По силата на същото разсъждение максималният пространствен ъгъл, който може да се заключи, е . Стерадианът може да се нарече също и квадратен радиан.
  • Един стерадиан също се равнява на сферичната повърхност на полигон, имащ ъглов ексцес от 1 радиан до 1/(4π) от цялата сфера или равняващ се на (180/π)² или 3282,80635 квадратни градуси.

До 1995 г. стерадианът беше допълнителна SI единица, но днес е прекатегоризиран и се разглежда като производна единица.

Аналогия с радианите[редактиране | редактиране на кода]

В двуизмерното пространство ъгълът, изразен в радиани, се отнася към дължината на срещулежащата му дъга по следния начин:

където
s е дължината на дъгата и
r е радиусът на окръжността.

В триизмерното пространство пространственият ъгъл, изразен в стерадиани, се отнася към повърхността, която отрязва от сферата:

където
S е лицето на повърхността и
r е радиусът на сферата.
Криейтив Комънс - Признание - Споделяне на споделеното Лиценз за свободна документация на ГНУ Тази страница частично или изцяло представлява превод на страницата „Steradian“ в Уикипедия на английски. Оригиналният текст, както и този превод, са защитени от Лиценза „Криейтив Комънс - Признание - Споделяне на споделеното“, а за съдържание, създадено преди юни 2009 година — от Лиценза за свободна документация на ГНУ. Прегледайте историята на редакциите на оригиналната страница, както и на преводната страница. Вижте източниците на оригиналната статия, състоянието ѝ при превода, и списъка на съавторите.