Група (алгебра)

от Уикипедия, свободната енциклопедия
Направо към навигацията Направо към търсенето
Емблема за пояснителна страница Вижте пояснителната страница за други значения на Група.

Възможните трансформации на куба на Рубик са пример за група

Група е вид алгебрична структура, която представлява едно от най-основните понятия в математиката. Една група се състои грубо казано от трансформациите на даден обект. Например множеството от ротации на един правилен n-ъгълник е група с n елемента. Пример за по-сложна група е множеството от трансформациите на куба на Рубик. Всяка група е снабдена с операция която на всеки две трансформации съпоставя тяхната композиция.

За да могат групите да се изучават в най-голяма общност те се дефинират аксиоматично без да се конкретизира върху кой обект действат. Група, това е множество снабдено с операция, която на всеки два елемента съпоставя трети, и която изпълнява определени аксиоми. Груповата операция трябва да е асоциативна, да има неутрален елемент и всеки елемент на групата трябва да има обратен. Множеството на целите числа заедно с операцията събиране е друг пример за група.

Дефиниция[редактиране | редактиране на кода]

Множеството G заедно със зададена в него бинарна операция · се нарича група и се означава с (G, ·), ако изпълнява следните аксиоми:

  1. асоциативност: за всеки три елемента a, b и c от G е в сила равенството (a · b) · c = a · (b · c).
  2. съществува единичен елемент: в G съществува елемент e, такъв, че за кой да е елемент a от G е в сила равенството e · a = a · e = a.
  3. наличие на обратен елемент: за произволен елемент a от G, съществува елемент b от G, наричан обратен на a, така че е в сила равенството a · b = b · a = e.

Множеството G със зададената в него бинарна операция ·, удовлетворяващо само първите две аксиоми се нарича моноид.

Така, групата може да бъде определена като моноид, в който всеки елемент е обратим.

Да отбележим, че свойството a · b = b · a (често наричан комутативен закон) не е задължително да е в сила.

Група G, за която това равенство е изпълнено за всеки два елемента a, b от G, се нарича комутативна, или абелева група.

Основни твърдения[редактиране | редактиране на кода]

Крайни групи[редактиране | редактиране на кода]

Теореми на Силов[редактиране | редактиране на кода]