Статистика на Бозе-Айнщайн

от Уикипедия, свободната енциклопедия
Jump to navigation Jump to search
Серия статии на тема
Статистическа физика
Gasfas.png


Статистиката на Бозе—Айнщайн описва разпределението на частиците между квантовите състояния на система от невзаимодействащи неразличими бозони.

Вълновата функция на система от бозони е симетрична относно размяната на частици. Поради тази симетрия бозоните не се подчиняват на принципа на Паули: в дадено квантово състояние може да има неограничен брой бозони от един и същи вид.

Статистиката на Бозе—Айнщайн изразява средния брой бозони, които заемат дадено квантово състояние на системата при дадени температура и химичен потенциал. Тя е въведена от Сатиендра Бозе през 1924 г., който я прилага върху фотони, а по-късно е обобщена от Алберт Айнщайн. [1].

Средният брой частици в квантовото състояние е:

,

където e енергията на квантовото състояние,  e химичният потенциал, е константата на Болцман, а е абсолютната температура.

Понеже неравенството трябва да е изпълнено за всички , включително за основното състояние, стойността на химичния потенциал трябва да е по-малка от енергията на основното състояние на системата:

.

Нулевото ниво на енергията може да се избере произволно, затова често се прави изборът . В такъв случай горното ограничение приема вида:

.

За сравнение, химичният потенциал на газ на Ферми може да бъде както положителен, така и отрицателен, а при Болцманов газ е силно отрицателен.

От формулата за е видно, че с намаляване на температурата все повече частици попадат в основното състояние. При достатъчно ниска температура почти всички частици се намират в основното състояние (Бозе—Айнщайнов кондензат).

Източници[редактиране | редактиране на кода]

  1. Lifshitz, E. M., Pitaevskii, L.P.. Landau and Lifshitz Course of Theoretical Physics Vol. 5: Statistical Physics. Pergamon Press, 1980. ISBN 0-08-023039-3. с. 159.