Механична работа (физика)

от Уикипедия, свободната енциклопедия
Направо към: навигация, търсене
Серия статии на тема

Класическа механика

PendulumWithMovableSupport.svg
Импулс · Сила · Енергия · Работа · Мощност · Скорост · Ускорение · Инерционен момент · Момент на сила · Момент на импулса

Работа или механична работа във физиката и механиката е мярка за количеството енергия, което се пренася от една система в друга. Това пренасяне се осъществява с помощта на сила.

Работата е произведението на силата, която действа на дадено тяло, и разстоянието, изминато от тялото по направление на силата. Стандартът ISO 31-3 определя работата да се означава с W (от англ. дума work) (допуска се и означение А).

Формули за работа[редактиране | edit source]

Елементарен случай[редактиране | edit source]

В най-простият случай, направлението на силата, приложена върху дадено тяло, съвпада с направлението на движението му. Тогава:

A=Fs \,

където F и s са скалари. Единицата за измерване на работата в SI е джаул (J) и се равнява на работата, извършена от сила един нютон (N) при преместване на тяло на разстояние един метър (m):

1 J = 1 N . 1 m или J = N.m


Когато силите са по посока на движение на тялото, работата е положителна (W > 0):

A = F.s

Сили, чиято посока е противоположна на движението на тялото, извършват отрицателна работа (W < 0):

A = - F.s

Силите, насочени перпендикулярно на посоката на движение (например силата на тежестта при хоризонтално движещо се тяло), не извършват работа (W = 0).

A = 0

Общ случай[редактиране | edit source]

В общия случай както пътят на тялото, така и силата са векторни величини, като силата се променя (функция на пътя). Тогава се постъпва по следния начин: разделяме пътя s на безкрайно малки отсечки ds (елементарно преместване) и пресмятаме цялата (сумарната) работа като определен интеграл:

W=\int_{s_1}^{s_2}\vec F(\vec s)\mathrm{d}\vec s

където:

s1 и s2 са началната и крайната точки.
 W е работата, извършена от силата
 \vec F е векторът на силата;
\vec s векторът на координатите или вектор на позицията, в която се намира обектът.

Това е скаларно произведение и може да бъде записано като:

W=\left|F\right|\left|s\right|\cos\alpha,

където α е ъгълът, сключен между посоката на силата и пътя, а |F| и |s| са съответните големини на силата и пътя.

Някои следствия[редактиране | edit source]

Тази формула много добре обяснява как едно силово поле може да извършва нулева работа. Ако силата е винаги перпендикулярна на посоката на движение, интеграла ще бъде винаги с резултат нула. Ако понякога подинтегралната величина приема ненулеви стойности, но работата е нулева, то в този случай функцията, която интегрираме, ще приема и положителни и отрицателни стойности.

Възможността ненулева сила да извършва нулева работа подчертава разликата между работа и свързаните с това категории: импулс на сила и импулс.