Химично съединение

от Уикипедия, свободната енциклопедия
Направо към: навигация, търсене

Химично съединение е съединение на атомите на два и повече химични елемента, при което се получава ново вещество с определени химични свойства. В химичното съединение връзката се осъществява посредством отдаването или приемането на електрони, броят на които зависи от валентността на елементите, които участват в химичната реакция.[1][2][3] Химичните съединения могат да бъдат с ковалентни, метални или йонни връзки. Могат да бъдат разделени на по-прости вещества с помощта на химични реакции.[4]

Те имат строго определена и постоянна структура като атомите са в определена пропорция помежду си.[3] Когато атоми на два или повече химични елемента си взаимодействат и се свържат химично в определени тегловни съотношения, те образуват химично съединение. Така например атомите на сярата и желязото когато са нагрети, си взаимодействат и се получава ново вещество наречено железен сулфид.

Химични вещества, които са съставени от молекули с два или повече атома на един и същ елемент не се считат за химични съединения (например H2, S8).[5]

Важни характеристики[редактиране | edit source]

Химичните съединения имат няколко елементарни, но съществени характеристики.

  1. Химичните елементи в едно химично съединение съществуват в постоянна и определена пропорция Така например 2 атома водород и един атом кислород формират една молекула вода.
  1. Химичните съединения имат определен набор от свойства Отделните елементи, които съставят съединението, не запазват свойствата си. Например водородът и кислородът са газове, а в съотношение 2:1 образуват вода, която е течност със съвсем нови свойства и характеристики.
  1. Химичните елементи в дадено съединение не могат да бъдат разделени с помощта на физични средства.

Разлики между химични съединения и смеси[редактиране | edit source]

Една от най-важните разлики между химично съединение и смес е, че отделните компоненти, отделните съставки на сместа могат да се разделят с обикновени, механични и физични средства като филтриране, изпарение, употреба на магнит и тн. докато компонентите на химичното съединение могат да бъдат отделени само с помощта на химични реакции.

Друга характеристика са физичните и химични свойства, така например свойствата на смесите зависят от свойствата на отделните съставки, докато химичните съединения имат физични и химични свойства напълно различни от съставящите ги елементи.

Въпреки това някои смеси са толкова еднородни, че лесно могат да бъдат объркани със смеси. Пример за това са сплавите. Те се получават механично със смесването на метали в течно състояние (след загряване) и след това охлаждането им до получаване на еднородна смес.

Химична формула[редактиране | edit source]

Химиците описват химичните съединения като използват различни формули. Когато химичните съединения са молекулни, се показва химичната формула за една молекулна единица. За полимери, минерали или метални оксиди се използва емпиричната формула като например NaCl за обикновената сол.

Елементите в химичната формула са записани обикновено в определен ред. Въглеродните атоми обикновено са първи, а водородните атоми следват веднага след това. Ако формулата не съдържа въглерод, другите химични елементи, включително водород, се записват в азбучен ред. Въпреки това има изключения от това правило. За йонните съединения положителният йон се записва пръв, а отрицателният на второ място. При оксидите, кислородът се записва последен. Органичните киселини обикновено следват това правило с C и H в началото на формулата, например C2HF3O2. Въпреки това формулите на неорганичните киселини обикновено са изключения от това правило. Те започват с водород. Формулата за основа завършва с хидроксилната група (OH-).

Видове химични съединения[редактиране | edit source]

Органични[редактиране | edit source]

Бъкминстърфулерен, просто вещество
Структура на уротропина

Органичните съединения са вещества, които съдържат въглерод, с изключение на карбидите, карбонатите, въглеродните окиси и цианидите. Основните класове са липиди, нуклеинови киселини, въглеводороди и белтъци.

Изключения[редактиране | edit source]

Карбонати[редактиране | edit source]
Карбиди[редактиране | edit source]

Карбид се наричат съединенията на въглерода с метали и неметали. В тесен смисъл терминът карбид се отнася до съединенията на въглерода с металите. От всички елементи само кислородът, сярата, азотът, флуорът,хлорът и бромът са по-електроотрицателни от въглерода и техните съединения са извън групата на карбидите. Карбидите могат да бъдат разделени на три групи: йонни, метални и ковалентни.

Въглеродни оксиди[редактиране | edit source]
Цианиди[редактиране | edit source]
Цианови производни[редактиране | edit source]
Полуорганични киселини[редактиране | edit source]
Синилна киселина[редактиране | edit source]

Циановодород (циановодородна или синилна киселина) е неорганично химично съединение с химична формула HCN и представлява безцветна, силно летлива, лесноподвижна течност с характерен мирис.

Циановодородната киселина се съдържа в някои растения, коксов газ, цигарен дим, отделя се по време на термично разлагане на найлон, полиуретан. Смесва се във всякакви съотношения с вода, етанол, етилов етер. Молекулата му е силно полярна.

Циановодородът е силна отрова.

Въглеродна киселина[редактиране | edit source]
Киселинни аниони от оксивъглерод[редактиране | edit source]

Алифатни или мастни съединения[редактиране | edit source]

Ароматни съединения[редактиране | edit source]

Въглеводороди[редактиране | edit source]

Алкан[редактиране | edit source]
Най-простият алкан е диводород
Алкани
Наименование Химична формула
Диводород H2
Метан CH4
Етан C2H6
Пропан C3H8
Бутан C4H10
Пентан C5H12
Хексан C6H14
Хептан C7H16
Октан C8H18
Нонан C9H20
Декан C10H22
Обща формула CnH2n + 2*
Алкени[редактиране | edit source]

Алкените са хомоложен ред от ненаситени въглеводороди с обща формула CnH2n. Съдържат една двойна връзка между въглеродните атоми в молекулата си. Висшите членове на реда имат изомери.

Наименованията на видовете алкени завършват на -ен, например етенпропенбутен. Алкените още се наричат олефини (по-остарял синоним, широко използван в петролната промишленост).

Брой въглеродни атоми Имена Формула
1 Метен CH2
2 Етен C2H4
3 Пропен C3H6
4 Бутен C4H8
5 Пентен C5H10
6 Хексен C6H12
7 Хептен C7H14
8 Октен C8H16
9 Нонен C9H18
10 Децен C10H20
Общо име Алкени
Алкини[редактиране | edit source]

Алкините в химията са хомоложен ред от ненаситени въглеводороди с обща формула CnH2n-2. Съдържат една тройна връзка между два от въглеродните атоми в молекулата си.

Наименованията на видовете алкини завършват на -ин, например въглерод: C , етин : H-C≡C-H

Алкините още се наричат ацетилени.

За разлика от алканите и в по-малка степен от алкените, алкините са много реактивни и нестабилни съединения. Отличават се с висока киселинност и имат pKa стойности (25) между тези на амоняка (35) и етанола (16). между алкани,алкени и алкини има генетична връзка. Имат висока температура на кипене и топене.малко разтворими във вода,но по-добре от останалите.

Химични свойства:Участват в присъединителни реакции като присъединяват водород, вода,халогени, халогеноводороди. Взаимодействат с водород като първо се разкъсва едната пи връзка,после и другата, и се получава алкан със същия брой въглеродни атоми.Горят като се получава СО2 и Н2О.

Алкадиени-въглеводороди с 2 двойни връзки.според разположението на двете двойни връзки има няколко вида алкадиени: >С=С=С< и други. физичните им свойства са подобни на алкените.пи връзките диктуват химичните свойства.

Брой въглеродни атоми Имена Формула
1 Въглерод C
2 Етин C2H2
3 Пропин C3H4
4 Бутин C4H6
5 Пентин C5H8
6 Хексин C6H10
7 Хептин C7H12
8 Октин C8H14
9 Нонин C9H16
10 Децин C10H18
Общо име Алкини

Функционални групи[редактиране | edit source]

Това са специални групи от атоми в молекулата, които са отговорни за нейните специфични химични реакции и свойства. Еднаквите функционални групи встъпват в еднакви или подобни химични реакции, независимо от големината на молекулата, част от която са. Съединения с една и съща функционална група, но различна дължина на въглеродната верига образуват т.нар. хомоложен ред: напр. алкани, алкохоли, алдехиди, кетони, карбоксилни киселини и т.н.

Пример за влиянието на функционалната група върху химичните и физичните свойства е даден в следната таблица:

Функционална група/Хомоложен ред Съединение Химическа формула Свойства
Изходно съединение / Алкан Бутан H3C–CH2–CH2–CH3 газ, неразтворим във вода, неутрален и слабореактивен
Карбоксилна група /Карбоксилна киселина Бутанова киселина H3C–CH2–CH2–COOH течност с лоша миризма, има свойствата на киселина, разтворима във вода
Аминогрупа / Амин Бутиламин H3C–CH(NH2)–CH2–CH3 течност с лоша миризма, има свойствата на слаба основа, разтворим във вода
Аминогрупа и Карбоксилна група / Аминокиселина Аминобутанова киселина H2N–CH2–CH2–CH2–COOH твърдо вещество, във вода е под формата на цвитерион H3N+–CH2–CH2–CH2–COO−,

амфотерни свойства, разтворима във вода

Комбинирането на имената на функционалните групи с тези на изходните алкани дава рационална номенклатура за именоване на органичните съединения.

Атомите на функционалната група са свързани помежду си и към цялата молекула посредством ковалентна връзка. Когато групата от атоми е свързана с останалата част от молекулата чрез йонна връзка, говорим за полиатомен йон или комплексен йон. Всички те се наричат "радикал".

Първият въглероден атом след този, с който е свързана функционалната група, се нарича алфа; вторият бета; третия гама и т.н. При наличието на повече от една функционална група броенето започва от тази, чиито атом заловен за основната верига е с по-голяма атомна маса.

Хомоложни редове[редактиране | edit source]

Наситени съединения[редактиране | edit source]

Ненаситени съединения[редактиране | edit source]

Полиненаситени съединения[редактиране | edit source]

Неорганични[редактиране | edit source]

Соли и други неорганични съединения[редактиране | edit source]

Солите са йонни химични съединения и често се получават в резултат на неутрализационна реакция между киселина и основа. Разтворите на соли във вода се наричат електролити и играят важна роля в електрохимията. Солите, които при хидролиза образуват хидроксилни аниони се наричат основни соли, а тези, които образуват водородни катиони - киселинни соли. Останалите соли се наричат неутрални соли.

Киселини[редактиране | edit source]

Киселините са химични съединения, които във воден разтвор отделят водородни катиони, H+ и оцветяват лакмусовата хартия в червен цвят. Водородният показател (pH) за тези съединения е по-малък от 7. Примери за киселини са оцетната киселина и сярната киселина. От гледна точка на електролитната дисоциация киселините са съединения, които във воден разтвор се дисоциират само на водородни катиони и киселинни аниони. Атомите на киселините са свързани чрез ковалентна полярна връзка. Общите химични свойства на водните им разтвори се дължат на водородните йони.

Примери за киселини са: хлороводород HCl, сярна киселина H2SO4, оцетна киселина CH3COOH и други.

Основи[редактиране | edit source]

Според теорията за електролитната дисоциация на Сванте Арениус основите са химични съединения, които във воден разтвор се дисоциират на метални катиони и хидроксидни аниони или взаимодействайки с киселини, дават вода и сол (химичната реакция се нарича неутрализация). Химичните свойства на основите се определят от общата хидроксилна група. Реагират с киселини, киселинни оксиди, амфотерни оксиди, амфотерни хидроксиди. Специфични реакции за някои основи са взаимодействията със соли и прости вещества на елементи с двойствен характер и халогенни елементи, както и участие в окислително-редукционни процеси. Една от най-известните е натриевата основа

Редки съединения[редактиране | edit source]

Редките съединения са трудно намерими в обществото и в природата, напр.: всички съединения на ниобия.

Виж също[редактиране | edit source]

Външни препратки[редактиране | edit source]

Източници[редактиране | edit source]

  1. Brown, Theodore L.; LeMay, H. Eugene; Bursten, Bruce E.; Murphy, Catherine J.; Woodward, Patrick (2009), „Chemistry: The Central Science, AP Edition“ (11th ed.), Upper Saddle River, NJ: Pearson/Prentice Hall, pp. 5–6, ISBN 0132364891, http://www.pearsonschool.com/index.cfm?locator=PSZ16f&PMDBSUBCATEGORYID=&PMDBSITEID=2781&PMDBSUBSOLUTIONID=&PMDBSOLUTIONID=6724&PMDBSUBJECTAREAID=&PMDBCATEGORYID=814&PMDbProgramId=52962 
  2. Hill, John W.; Petrucci, Ralph H.; McCreary, Terry W.; Perry, Scott S. (2005), „General Chemistry“ (4th ed.), Upper Saddle River, NJ: Pearson/Prentice Hall, p. 6, ISBN 9780131402836, http://www.pearsonhighered.com/educator/academic/product/0,3110,0131402838,00.html 
  3. а б Whitten, Kenneth W.; Davis, Raymond E.; Peck, M. Larry (2000), „General Chemistry“ (6th ed.), Fort Worth, TX: Saunders College Publishing/Harcourt College Publishers, p. 15, ISBN 9780030723735 
  4. Wilbraham, Antony; Matta, Michael; Staley, Dennis; Waterman, Edward (2002), „Chemistry“ (1st ed.), Upper Saddle River, NJ: Pearson/Prentice Hall, p. 36, ISBN 0132512106 
  5. Halal, John (2008), "Chapter 8: General Chemistry", „Milady's Hair Structure and Chemistry Simplified“ (5 ed.), Milady Publishing, pp. 96–98, ISBN 1428335587, http://www.wadsworthmedia.com/marketing/sample_chapters/156253629X_ch08.pdf