Електромагнитно взаимодействие

от Уикипедия, свободната енциклопедия
(пренасочване от Електромагнетизъм)
Направо към: навигация, търсене
Серия статии на тема

Класическа електродинамика

CoulombsLaw.svg
Електричество Магнетизъм Електромагнетизъм

Електромагнитното взаимодействие е едно от четирите фундаментални взаимодействия във физиката, възникващо между обектите с електрически заряд. Другите три фундаментални взаимодействия са силното взаимодействие (на него се дължи съществуването на атомните ядра), слабото взаимодействие (свързано с някои форми на радиоактивния разпад) и гравитационното взаимодействие (между частиците, притежаващи маса). Всички останали взаимодействия в природата са свързани с тези четири.

Свойства[редактиране | edit source]

Електромагнитното взаимодействие се проявява между частиците, имащи електрически заряд, както и между електрически неутралните съставни частици, части от които притежават заряд. Например, неутронът е електрически неутрална частица, но в състава му влизат заредени кварки и затова той участва в електромагнитни взаимодействия (в частност, притежава ненулев магнитен момент).

От фундаменталните частици в електромагнитни взаимодействия участват кварките, електроните, мюоните и тау-частиците, както и заредените калибровъчни W^{\pm} бозони. От гледна точка на Квантовата теория на полето електромагнитното взаимодействие се пренася от безмасовия бозонфотона.

Електромагнитното взаимодействие се отличава от слабото и силното взаимодействие със своето далечно действие — силата на взаимодействие между два заряда спада пропорционално на квадрата на разстоянието (виж Закон на Кулон), но слабото и силното взаимодействие практически изчезват при разстояния съответно 10-18 m и 10-15 m.

Гравитационното взаимодействие също отслабва пропорционално на квадрата на разстоянието, но електромагнитното взаимодействие на заредените частици е много по-силно от гравитационното. Причината, поради която електромагнитното взаимодействие не се проявява с голяма сила в космически мащаби е, че материята има електрическа неутралност, тоест във всяка област на Вселената с висока степен на точност присъстват равни количества положителни и отрицателни заряди.

Силовото поле на електромагнитното взаимодействие - електромагнитното поле - често се разглежда за удобство като съставено от две отделни полета: електрично и магнитно. Около всяка електрически заредена частица съществува ненулево електрично поле, което поражда електрични сили; тези сили са в основата на статичното електричество и пораждат движението на електрични заряди (електричен ток) по проводници. Магнитното поле, от друга страна, се причинява от движението на електрични заряди и поражда магнитни сили, които в магнитостатиката свързваме с магнитите.

Поради взаимосвързаността на електричното и магнитно полета е логично да ги разглеждаме като един единствен обект — електромагнитното поле. Това обединяване, завършено от Джеймс Клерк Максуел, е едно от триумфалните постижения на физиката през 19 век. То има последствия с голямо значение, едно от които е изясняването на природата на светлината: както се оказва, тя всъщност представлява разпространяващо се електромагнитно излъчване или електромагнитна вълна. Различните честоти на трептене на вълната съответстват на различните части на електромагнитния спектър — от радиовълните с ниски честота, през видимата светлина със средни честоти, до гама-лъчите с високи честоти.

Основни теоретични зависимости[редактиране | edit source]

Класическа електродинамика[редактиране | edit source]

На проводник с ток, разположен в магнитно поле, действа силата на Ампер: \vec{F}_A = I \cdot [\Delta \vec{l} \times \vec{B}]

На заредена частица, движеща се в магнитно поле, действа силата на Лоренц: \vec{F}_L = q \cdot [\vec{V} \times \vec{B}] Източник на електростатичното взаимодействие е електричният заряд.

Силата на взаимодействие между 2 неподвижни заряда се определя от Закона на Кулон. Носител на взаимодействието е фотонът (γ-квантът), който има спин 1 и няма заряд, масата му на покой е 0 (нула), движи се със скоростта на светлината.

Квантова електродинамика[редактиране | edit source]

Прояви на електромагнетизма[редактиране | edit source]

Оказва се, че електромагнитната сила е в основата на практически всички явления, с които се сблъскваме в ежедневието си, с изключение на гравитацията. Грубо казано, всички сили на взаимодействие между атомите могат да бъдат сведени до влиянието на електромагнитната сила върху електрически заредените протони и електрони, от които те са съставени. Това включва както силите, които упражняваме при "бутане" и "дърпане" на обикновени материални обекти, основаващи се на междумолекулното взаимодействие между молекулите на телата ни и тези на обектите, така и всички химични явления, които се дължат на взаимодействия между електронните орбитали.

История на изследванията[редактиране | edit source]

В своя труд De Magnete (1600) Уилям Гилбърт предполага, че макар електричеството и магнетизмът да причиняват привличане и отблъскване между обектите по сходен начин, те представляват различни явления. Моряците отдавна били забелязали, че при гръмотевични бури стрелката на компаса „полудява“, но връзката между електричеството и светкавиците била потвърдена едва с експериментите на Бенджамин Франклин през 1752. Един от първите откриватели на връзката между произведеното от човека електричество и магнетизма бил италианецът Романьози, който през 1802 забелязал, че при свързването на проводник към електрическа батерия стрелката на намиращия се наблизо компас се отклонява. Ефектът обаче не бил широко известен до 1820, когато Оерстед провел подобен експеримент. Работата на Оерстед на свой ред повлияла на Ампер, който създал математическата основа на теорията на електромагнетизма.

Теорията на електромагнетизма, известна като класическа електродинамика, била разработена през 19-ти век от различни физици, като кулминацията представлява работата на английския физик Джеймс Клерк Максуел, който обединил всички теоретични постижения до момента в стройна единна теория и открил електромагнитната природа на светлината. В класическата електродинамика електромагнитното поле се описва от система от четири уравнения, известни като Уравнения на Максуел, а електромагнитната сила се подчинява на закон на Лоренц.

Една от особеностите на класическата теория на електромагнетизма, е че тя трудно се съгласува с класическата механика, но е в добро съгласие със специалната теория на относителността. Според уравненията на Максуел скоростта на светлината е универсална константа, зависеща единствено от диелектричната проницаемост и магнитната проницаемост на вакуума. Това е в противоречие с принципа на Галилей, че физическите закони са еднакви във всички инерциални координатни системи — основен принцип на класическата механика. Една възможност двете теории да бъдат съгласувани е предположението за съществуване на „световен етер“, през който се разпространява светлината. Опитите за експериментално потвърждение на етера (сред тях най-забележителен е опитът на Майкелсън-Морли) обаче са неуспешни. През1905 Алберт Айнщайн решава противоречието, като предлага своята специална теория на относителността, в която класическата кинематика се замества от нова, която е в съгласие с класическия електромагнетизъм. Освен това специалната теория на относителността показва, че в движещи се координатни системи магнитното поле се трансформира в поле, което притежава различна от нула електрическа компонента, както и обратно, доказвайки по този начин, че това са две страни на едно и също явления — от там е и изразът електромагнетизъм.

Обаче в друга своя статия от същата година Айнщайн поставя под въпрос самите основи на класическия електромагнетизъм. Теорията му за фотоелектричния ефект (за която получава Нобелова награда за физика) съдържа твърдението, че светлината може да съществува като дискретни порции, подобни на частици (кванти), които по-късно стават известни като фотони. Тази негова теория на фотоефекта увеличава напредъка, постигнат при решаването на проблема за ултравиолетовата катастрофа от Макс Планк през 1900. В своята работа Планк показва, че горещите обекти имат електромагнитно излъчване и то е на дискретни пакети, което води до извода, че от т. нар. абсолютно черно тяло се излъчва точно определено количество енергия - Закон на Планк. Тези два резултата изпадат в директно противоречие с класическия възглед за светлината като непрекъсната вълна. Теориите на Планк и Айнщайн пряко предшествуват създаването на квантовата механика, формулирана през 1925, която се наложило да бъде последвана и от квантова теория на електромагнетизма. Тази теория, завършена през 40-те години на 20 век, е известна като квантова електродинамика и е една от най-точните физически теории.

Единици за електричество и магнетизъм от SI[редактиране | edit source]

Мярка за Име Означение Изразяване чрез основни единици
Електрически заряд, количество електричество кулон C A.s
Електрически потенциал, потенциална разлика, електродвижещо напрежение волт V J/C = kg m²/A s3
Електрическо съпротивление ом Ω V/A = kg.m²/s3.A²
Специфично електрическо съпротивление ом метър Ω·m kg·m3·s−3·A−2
Електрически капацитет фарад F A².s4/kg.m²
Електрическа проводимост сименс S Ω -1 = kg-1 m-2 s3
Електрически ток ампер A A = W/V = C/s
Електрическа мощност ват W V·A = kg·m2·s−3
Диелектрична проницаемост фарад на метър F/m kg−1·m−3·A2·s4
Специфична електропроводимост сименс на метър S/m kg−1·m−3·s3·A2
Магнитен поток вебер Wb kg m²/s² A
Магнитна индукция тесла T Wb/m² = kg/s² A
Индуктивност хенри H kg m²/s² A²
Интензитет на магнитното поле ампер на метър A/m A·m−1
Магнитна проницаемост хенри на метър H/m kg·m·s−2·A−2