Списък на организмите по брой на хромозомите

от Уикипедия, свободната енциклопедия

Списъкът на организмите според броя на хромозомите описва плоидията (броя на хромозомите в клетките на организма). Това число, заедно с визуалния вид на хромозомата, е известно като кариотип,[1][2][3] и може да бъде намерено чрез разглеждане на хромозомите през микроскоп. Обръща се внимание на тяхната дължина, позицията на центромерите, модела на ленти, всякакви разлики между половите хромозоми и всякакви други физически характеристики.[4] Подготовката и изследването на кариотипове е част от цитогенетиката.

  Други Еукариоти
Организъм
(Научно име)
Брой хромозоми Изображение Кариотип Бележки Източник
Myrmecia pilosula 2/1 2 за женските, мъжките са хапроидни с 1 хромозома. Най-малкият възможен бро хромозоми. Други видове мравки имат повече хромозоми.[5] [5]
Tetranychidae 4 – 14 В семейство Tetranychidae мъжките са хаплоидни, а женските – диплоидни.[6] [6]
Cricotopus sylvestris 4 [7]
Oikopleura dioica 6 [8]
Aedes aegypti 6 Наборът 2n=6 е постоянен в семейството Culicidae, с изключение на Chagasia bathana, с 2n=8.[9] [9]
Индийски мунтджак
(Muntiacus muntjak)
6/7 2n = 6 за женските и 7 за мъжките. Видът е с най-ниския диплоиден набор в бозайниците.[10] [11]
Руняка (Hieracium) 8
Fruit fly
(Drosophila melanogaster)
8 6 автозоми и 2 полови хромозоми [12]
Macrostomum lignano 8 [13]
Кладенчов мъх (Marchantia polymorpha) 9 Обикновено хапроиден с преобладаващ гаметофитен период. 8 автозоми и 1 полова. Половите хромозоми при мъховете са UV. U е за женски, а V за мъжки. n = 9 е обичайно за много Marchantiales. Някои видове са ди- и триплоиди. [14]
Талов кресон
(Arabidopsis thaliana)
10
Wallabia bicolor 10/11 11 за мъжки, 10 за женски [15]
Австралийска маргаритка
(Brachyscome dichromosomatica)
12 Могат да имат повече B от A хромозоми, 2n=4. [16]
Нематоди
(Caenorhabditis elegans)
12/11 12 за хемафродити, 11 за мъжки
Спанак
(Spinacia oleracea)
12 [17]
Бакла
(Vicia faba)
12 [18]
Scathophaga stercoraria 12 10 автозоми и 2 полови. Мъжките са XY, а женските – XX. Половите хромозоми са най-големите, заемайки 30% от общия диплоиден набор на женските и 25% в мъжките.[19] [19]
Слузеста плесен
(Dictyostelium discoideum)
12 [20]
Краставица
(Cucumis sativus)
14 [21]
Тасманийски дявол
(Sarcophilus harrisii)
14
Ръж
(Secale cereale)
14 [22]
Грах
(Pisum sativum)
14 [22]
Ечемик
(Hordeum vulgare)
14 [23]
Aloe vera 14 Диплоиден набор 2n = 14 с четири двойки дълги акроцентрични хромозоми от 14.4 μm до 17.9 μm и три двойки субметацентрични от 4.6 μm до 5.4 μm.[24] [24]
Коала
(Phascolarctos cinereus)
16
Кенгуру 16 Заедно с други членове на семейство Macropus, но не и червено кенгуру [25]
Botryllus schlosseri 16 [26]
Schistosoma mansoni 16 2n=16. 7 автозоми и ZW полови хромозоми.[27] [27]
Зимен лук
(Allium fistulosum)
16 [28]
Чесън
(Allium sativum)
16 [28]
Крастов кърлеж
(Sarcoptes scabiei)
17/18 17 или 18 хромозоми. Причината за това е неизвестна, но верятно е XO определяне на пола, където при мъжките (2n=17) липса полова хромозома и затова женските са 2n=18.[29] [29]
Репичка
(Raphanus sativus)
18 [22]
Морков
(Daucus carota)
18 Семейство Daucus включва около 25 вида. D. carota има 9 хромозоми двойки (2n = 2x = 18). D. capillifolius, D. sahariensis и D. syrticus са с 2n = 18, whereas D. muricatus (2n = 20) аи D. pusillus (2n = 22) са с повече хромозоми. Известен е и малък брой полиплоиди, D. glochidiatus (2n = 4x = 44) и D. montanus (2n = 6x = 66).[30] [30]
Зеле
(Brassica oleracea)
18 Broccoli, cabbage, kale, kohlrabi, brussels sprouts, and cauliflower are all the same species and have the same chromosome number.[22] [22]
Цитруси
(Citrus)
18 [31] [32]
Маракуя
(Passiflora edulis)
18 [33]
Setaria viridis
(Setaria viridis)
18 [34]
Царевица
(Zea mays)
20 [22]
Канабис
(Cannabis sativa)
20
Xenopus tropicalis 20 [35]
Cephalotus follicularis 20 [36]
Какаово дърво
(Theobroma cacao)
20 [37]
Евкалипт
(Eucalyptus)
22 Въпреки че нкои видове са с друг набор, 2n = 22 е присъщ на 135 (33.5%) вида от семейство Eucalyptus.[38] [39]
Вирджински опосум
(Didelphis virginiana)
22 [40]
Боб
(Phaseolus sp.)
22 Всички видове от семейство Бобови имат еднакъв набор.[22] [22]
Охлюв 24
Пъпеш
(Cucumis melo)
24 [41]
Ориз
(Oryza sativa)
24 [22]
Solanum elaeagnifolium 24 [42]
Сладък кестен
(Castanea sativa)
24 [43]
Домат
(Solanum lycopersicum)
24 [44]
Обикновен бук
(Fagus sylvatica)
24 [45]
Червено кучешко грозде
(Solanum dulcamara)
24 [46][47]
Корков дъб
(Quercus suber)
24 [48]
Зелена водна жаба
(Pelophylax kl. esculentus)
26 Фертилен хибрид на Жаба на Лесона и Голяма водна жаба.[49] [50]
Аксолотъл
(Ambystoma mexicanum)
28 [51]
Креватна дървеница
(Cimex lectularius)
29 – 47 26 автозоми и променлив брой полови хромозоми от три (X1X2Y) до 21 (X1X2Y+18 допълнителни X хромозоми).[52] [52]
Многоножки броненосци
(Arthrosphaera magna attems)
30 [53]
Жираф
(Giraffa camelopardalis)
30 [54]
Американска норка
(Neogale vison)
30
Шамфъстък
(Pistacia vera)
30 [55]
Японска копринена буба
Antheraea yamamai
31
[56]
Saccharomyces cerevisiae 32
Обикновена медоносна пчела
(Apis mellifera)
32/16 32 за женските (2n = 32), мъжките са халоиди (1n =16).[57] [57]
Американски язовец
(Taxidea taxus)
32
Алфалфа
(Medicago sativa)
32 Питомната алфалфа е тетраплоид, 2n=4x=32. Дивите са 2n=16.[22]:с. 165 [22]
Червена лисица
(Vulpes vulpes)
34 Плюс 0 – 8 B хромозоми. [58]
Слънчоглед
(Helianthus annuus)
34 [59]
Бодливо свинче
(Erethizon dorsatum)
34 [60]
Артишок
(Cynara cardunculus var. scolymus)
34 [61]
Жъта мангуста
(Cynictis penicillata)
36
Тибетска лисица
(Vulpes ferrilata)
36
Морска звезда
(Asteroidea)
36
Червена панда
(Ailurus fulgens)
36
Сурикат
(Suricata suricatta)
36
Маниока
(Manihot esculenta)
36 [62]
Дългоноса кузиманзе
(Crossarchus obscurus)
36
Дъждовен червей
(Lumbricus terrestris)
36
Обикновена ноктеста жаба
(Xenopus laevis)
36 [35]
Алдрованда
(Aldrovanda vesiculosa)
38 [36]
Тигър
(Panthera tigris)
38
Видра
(Enhydra lutris)
38
Самур
(Martes zibellina)
38
Американски енот
(Procyon lotor)
38 [63]
Златка
(Martes martes)
38
Прасе
(Sus)
38
Азиатска късоноктеста видра
(Aonyx cinerea)
38
Лъв
(Panthera leo)
38
Пекан
(Pekania pennanti)
38 a type of marten
European mink
(Mustela lutreola)
38
Коати 38
Домашна котка
(Felis catus)
38
Белка
(Martes foina)
38
Bogertophis rosaliae 38 [64]
Американска златка
(Martes americana)
38
Bogertophis subocularis 40 [65]
Мишка
(Mus musculus)
40 [66]
Манго
(Mangifera indica)
40 [22]
Хиена
(Hyaenidae)
40
Фретка
(Mustela furo)
40
Черен пор
(Mustela putorius)
40
Американски бобър
(Castor canadensis)
40
Фъстък
(Arachis hypogaea)
40 Култивираният е алотетраплоид (2n = 4x = 40). Най-блидките видове са диплоиди (2n = 2x = 20).[67] [67]
Росомаха
(Gulo gulo)
42
Пшеница
(Triticum aestivum)
42 Хексаплоиди с 2n=6x=42. Твърдата пшеница, Triticum turgidum var. durum, е тетраплоид с 2n=4x=28.[22] [22]
Макак резус
(Macaca mulatta)
42 [68]
Плъх
(Rattus norvegicus)
42 [69]
Овес
(Avena sativa)
42 Хексаплоид, 2n=6x=42. Култивирани са и ди- и тетраплоиди.[22] [22]
Голяма панда
(Ailuropoda melanoleuca)
42
Фоса
(Cryptoprocta ferox)
42
Заек подземник
(Oryctolagus cuniculus)
44
Европейски язовец
(Meles meles)
44
Ушата медуза
(Aurelia aurita)
44 [70]
Делфин
(Delphinidae)
44
Кафе
(Coffea arabica)
44 Out of the 103 species in the genus Coffea, arabica coffee is the only tetraploid species (2n = 4x = 44), the remaining species being diploid with 2n = 2x = 22.[71]
Китайски мунтжак
(Muntiacus reevesi)
46
Човек
(Homo sapiens)
46 44 автозоми и 2 полови [72]
Антилопа нилгау
(Boselaphus tragocamelus)
46 [73]
Parhyale hawaiensis 46 [74]
Воден бивол
(Bubalus bubalis)
48
Тютюн
(Nicotiana tabacum)
48 Култивираният N. tabacum е амфидиплоид (2n=4x=48), хибрид на N. sylvestris (2n=2x=24, майчин донор) и N. tomentosiformis (2n=2x=24, бащин донор) преди 200 000 години.[75] [75]
Картоф
(Solanum tuberosum)
48 Картофът, Solanum tuberosum, е тетраплоид (2n = 4x = 48). Други видове са ди- (2n = 2x = 24), три- (2n = 3x = 36), тетра- (2n = 4x = 48), или пинтаплоиди (2n = 5x = 60).[76] Wild relatives mostly have 2n=24.[22] [76]
Орангетан
(Pongo)
48
Зайци
(Lepus)
48 [77][78]
Горила
(Gorilla)
48
Еленова мишка
(Peromyscus maniculatus)
48
Шимпанзе
(Pan troglodytes)
48 [79]
Европейски бобър
(Castor fiber)
48
Данио
(Danio rerio)
50 [80]
Европейски таралежи
Erinaceus
48 [81]
Четирипръст таралеж
Atelerix
48 [82]
Воден бивол (Riverine)
(Bubalus bubalis)
50
Ивичест скункс
(Mephitis mephitis)
50
Ананас
(Ananas comosus)
50 [22]
Лисица джудже
(Vulpes macrotis)
50
Очилата мечка
(Tremarctos ornatus)
52
Птицечовка
(Ornithorhynchus anatinus)
52 Ten sex chromosomes. Males have X1Y1X2Y2X3Y3X4Y4X5Y5, женските have X1X1X2X2X3X3X4X4X5X5.[83] [84]
(Gossypium hirsutum) 52 Култивираните, G. hirsutum, са алотетраплоиди 2n=4x=52). Видът произвежда 90% от светвния памук. В семейство Gossypium 45 вида са диплоиди (2n = 2x = 26)и 5 са алотетраплоиди (2n = 4x = 52).[85] [85]
Овца
(Ovis aries)
54
Дамани
(Hyracoidea)
54 Даманите се смятат за най-близките роднини на слоновете[86] но Сирените са открити за по-близки родинни. [87]
Енотовидно куче
(Nyctereutes procyonoides procyonoides)
54 TНаборът е за N. p. procyonoides, 2n=54+B(0–4). N. p. viverrinus е с 2n=38+B(0–8).[88][89] [88]
Капуцин
(Cebinae)
54 [90]
Копринена буба
(Bombyx mori)
56 Набор на B. mori (2n=56), който произвежда над 99% от световната коприна.[91] Други видове се различават по хромозомния набор (Samia cynthia с 2n=25–28,[92] Antheraea pernyi и 2n=98.[93]) [94]
Ягода
(Fragaria × ananassa)
56 Октаплоид, основно култивиран е Fragaria × ananassa (2n = 8x = 56).[95] [95]
Гаур
(Bos gaurus)
56
Слон
(Elephantidae)
56
Вълнест мамут
(Mammuthus primigenius)
58 изчезнал, тъкан от замръзнала тъкан
Як
(Bos grunniens)
60
Коза
(Capra hircus)
60
Домашно говедо
(Bos taurus)
60
Бизон
(Bison bison)
60
Черна антилопа
(Hippotragus niger)
60 [96]
Бенгалска лисица
(Vulpes bengalensis)
60
Гъботворка
(Lymantria dispar dispar)
62
Магаре
(Equus asinus)
62
Червена ара
(Ara macao)
62 – 64 [97]
Муле 63 фертилно, от кон и магаре
Морско свинче
(Cavia porcellus)
64
Петнист скункс
(Spilogale x)
64
Кон
(Equus caballus)
64
Фенек
(Vulpes zerda)
64
Ехидна
(Tachyglossidae)
63/64 63 (X1Y1X2Y2X3Y3X4Y4X5, мъжки) и 64 (X1X1X2X2X3X3X4X4X5X5, женски)[98]
Чинчила
(Chinchilla lanigera)
64 [60]
Деветопоясен броненосец
(Dasypus novemcinctus)
64 [99]
Сива лисица
(Urocyon cinereoargenteus)
66
Благороден елен
(Cervus elaphus)
68
Уапити
(Cervus canadensis)
68
Rupornis magnirostris 68 [100]
Белоопашат елен
(Odocoileus virginianus)
70
Беладона
(Solanum nigrum)
72 [101]
Bambusa chungii 64 – 72 [102]
Дългоуха лисица
(Otocyon megalotis)
72
Малайска мечка
(Helarctos malayanus)
74
Бърнеста мечка
(Melursus ursinus)
74
Бяла мечка
(Ursus maritimus)
74
Кафява мечка
(Ursus arctos)
74
Хималайска мечка
(Ursus thibetanus)
74
Американска черна мечка
(Ursus americanus)
74
Храстово куче
(Speothos venaticus)
74
Гривест вълк
(Chrysocyon brachyurus)
76
Сив вълк
(Canis lupus)
78
Златист чакал
(Canis aureus)
78
Гълъбови
(Columbidae)
78 [103]
Куче
(Canis familiaris)
78 [104][105][106]
Динго
(Canis familiaris)
78
Азиатско диво куче
(Cuon alpinus)
78
Койот
(Canis latrans)
78
Кокошка
(Gallus gallus domesticus)
78
Непентес
(Nepenthes rafflesiana)
78 [36]
Пуйка
(Meleagris)
80 [107]
Захарна тръстика
(Saccharum officinarum)
80 This is for S. officinarum (octoploid, 2n = 8× = 80).[108] About 70% of the world's sugar comes from this species.[109] Other species in the genus Saccharum, collectively known as sugarcane, have chromosome numbers in the range 2n=40–128.[110] [108]
Гълъб
(Columbidae)
80 [111]
Синя сврака
(Cyanopica cyanus)
80 [112]
Голяма бяла акула
(Carcharodon carcharias)
82 [113]
Кървавочервен здравец
(Geranium sanguineum)
84 [114]
Botrychium 90
Sceptridium 90
Ichthyomys pittieri 92 Смятан за най-викокия брой при бозайниците, заедно с Anotomys leander. [115]
Скарида
(Penaeus semisulcatus)
86 – 92 [116]
Anotomys leander 92 [115]
Kamraj (fern)
(Helminthostachys zeylanica)
94
Златиста каракуда
(Carassius carassius)
100 [117]
Tympanoctomys barrerae 102 Най-висок брой при бозайниците, смятан за тетраплоид[118] или алотетраплоид.[119] [120]
Clarias batrachus 104 [121]
Веслонос
(Polyodon spathula)
120 [122]
Gymnocarpium robertianum 160 Тетраплоид (2n = 4x = 160) [123]
Същински боабаб
(Adansonia digitata)
168 Известно като дървото на живота, тетраплоид (2n = 4x = 168) [124]
Миногови
(Petromyzontidae)
174 [125]
Botrypus virginianus 184 [126]
Камчатски рак
(Paralithodes camtschaticus)
208
Полски хвощ
(Equisetum arvense)
216
Agrodiaetus пеперуди
(Agrodiaetus shahrami)
268 Един от най-високите хромозомни набори при животните. [127]
Morus nigra 308 Най-висока полиплоидия в растенията, 22-плоид (2n = 22x = 308)[128] [129]
Атласка синя пеперуда
(Polyommatus atlantica)
448 – 452 2n = Шаблон:Circa–452. Най-голям брой хромозоми за неполиплоиден еукариот.[130] [130]
Ophioglossum reticulatum 1260 n=120–720 с честа полиплоидия[131] Ophioglossum reticulatum n=720 е херсаплоид, а с 2n=1260 е декаплоид[132]
Tetrahymena thermophila 10 (in micronucleus) 50x = 12,500 (в макроядро без минихромозоми)
10,000x = 10,000 (макроядро и минихромозоми)[133]
style="background:lightblue;"Oxytricha trifallax 16,000[134] Едноядрени нанохромозоми, амфилоид. MAC хромозоми × 1900 плоидия = 2.964 × 107 хромозоми [135][136][137]

Източници[редактиране | редактиране на кода]

  1. Concise Oxford Dictionary
  2. The chromosomes. 6th. London, Chapman & Hall, 1973. с. 28.
  3. Chapter XII: The Karyotype // Variation and evolution in plants. Columbia University Press, 1950.
  4. A dictionary of genetics. 7th. Oxford University Press, 2006. с. 242.
  5. а б Myrmecia pilosula, an Ant with Only One Pair of Chromosomes // Science 231 (4743). March 1986. DOI:10.1126/science.231.4743.1278. с. 1278.
  6. а б Minimal chromosome number in false spider mites (Tenuipalpidae) // Experientia 28 (6). 1972. DOI:10.1007/BF01944992. с. 707.
  7. Cytotaxonomical Diagnostics of Species from the Genus Cricotopus (Chironomidae, Diptera) // Caryologia 29 (3). 1976. DOI:10.1080/00087114.1976.10796669. с. 291–306.
  8. Untersuchungen über die Gehäusebildung bei Appendicularien (Oikopleura dioica Fol) // Zeitschrift für Morphologie und Ökologie der Tiere 41 (1). 1952. DOI:10.1007/BF00407623. с. 1–53.
  9. а б Advances in Genetics, Volume 41 (Advances in Genetics). Boston, Academic Press, 1999. ISBN 978-0-12-017641-0. с. 2.
  10. Rapid and parallel chromosomal number reductions in muntjac deer inferred from mitochondrial DNA phylogeny // Molecular Biology and Evolution 17 (9). September 2000. DOI:10.1093/oxfordjournals.molbev.a026416. с. 1326–33.
  11. Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number // Science 168 (3937). June 1970. DOI:10.1126/science.168.3937.1364. с. 1364–6.
  12. Drosophila Genome Project // National Center for Biotechnology Information. Посетен на 2009-04-14.
  13. Evidence for Karyotype Polymorphism in the Free-Living Flatworm, Macrostomum lignano, a Model Organism for Evolutionary and Developmental Biology // PLOS ONE 11 (10). 2016. DOI:10.1371/journal.pone.0164915. с. e0164915.
  14. Shimamura, Masaki. Marchantia polymorpha: Taxonomy, Phylogeny and Morphology of a Model System // Plant & Cell Physiology 57 (2). 2016. DOI:10.1093/pcp/pcv192. с. 230–256.
  15. Comparative chromosome painting between two marsupials: origins of an XX/XY1Y2 sex chromosome system // Mammalian Genome 8 (6). June 1997. DOI:10.1007/s003359900459. с. 418–22.
  16. Organisation and origin of a B chromosome centromeric sequence from Brachycome dichromosomatica // Chromosoma 103 (10). July 1995. DOI:10.1007/BF00344232. с. 708–14.
  17. Evidence for a Common Origin of Homomorphic and Heteromorphic Sex Chromosomes in Distinct Spinacia Species // G3 5 (8). June 2015. DOI:10.1534/g3.115.018671. с. 1663–73.
  18. Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles // International Journal of Environmental Research and Public Health 9 (5). May 2012. DOI:10.3390/ijerph9051649. с. 1649–62.
  19. а б The karyotype of the yellow dung fly, Scathophaga stercoraria, a model organism in studies of sexual selection // Journal of Insect Science 10 (118). 2010. DOI:10.1673/031.010.11801. с. 1–11.
  20. First of six chromosomes sequenced in Dictyostelium discoideum // Genome News Network. Посетен на 2009-04-29.
  21. Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping // BMC Genomics 16 (1). September 2015. DOI:10.1186/s12864-015-1877-6. с. 730.
  22. а б в г д е ж з и к л м н о п р с т Evolution of crop plants. New York, Longman, 1976. ISBN 978-0-582-44496-6.[посочете страница]
  23. Chromatin Ring Formation at Plant Centromeres // Frontiers in Plant Science 7. 2016. DOI:10.3389/fpls.2016.00028. с. 28.
  24. а б High frequency microcloning of Aloe vera and their true-to-type conformity by molecular cytogenetic assessment of two years old field growing regenerated plants // Botanical Studies 54 (1). December 2013. DOI:10.1186/1999-3110-54-46. с. 46.
  25. G-banded chromosomes and the evolution of macropodidae // Australian Mammalogy 2. December 1978. DOI:10.1071/AM78007. с. 50–63.
  26. Chromosome number within the class Ascidiacea // Marine Biology 26 (1). 1974. DOI:10.1007/BF00389087. с. 63–68.
  27. а б The genome of the blood fluke Schistosoma mansoni // Nature 460 (7253). July 2009. DOI:10.1038/nature08160. с. 352–8.
  28. а б Chromosome dynamics visualized with an anti-centromeric histone H3 antibody in Allium // PLOS ONE 7 (12). 2012. DOI:10.1371/journal.pone.0051315. с. e51315.
  29. а б Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus // Parasites & Vectors 5. January 2012. DOI:10.1186/1756-3305-5-3. с. 3.
  30. а б Characterization of centromeric histone H3 (CENH3) variants in cultivated and wild carrots (Daucus sp.) // PLOS ONE 9 (6). 2014. DOI:10.1371/journal.pone.0098504. с. e98504.
  31. Chromosome number and secondary constriction variation in 51 accessions of a citrus germplasm bank // Brazilian Journal of Genetics 20 (3). 1997. DOI:10.1590/S0100-84551997000300021. с. 489–496.
  32. Karyological studies in ten species of Citrus(Linnaeus, 1753) (Rutaceae) of North-East India // Comparative Cytogenetics 5 (4). 2011. DOI:10.3897/CompCytogen.v5i4.1796. с. 277–87.
  33. Souza, Margarete Magalhães, Telma N. Santana Pereira, and Maria Lúcia Carneiro Vieira. "Cytogenetic studies in some species of Passiflora L.(Passifloraceae): a review emphasizing Brazilian species." Brazilian Archives of Biology and Technology 51.2 (2008): 247–258. https://dx.doi.org/10.1590/S1516-89132008000200003
  34. Ribosomal DNA in diploid and polyploid Setaria (Poaceae) species: number and distribution // Comparative Cytogenetics 9 (4). 2015. DOI:10.3897/CompCytogen.v9i4.5456. с. 645–60.
  35. а б A New Nomenclature of Xenopus laevis Chromosomes Based on the Phylogenetic Relationship to Silurana/Xenopus tropicalis // Cytogenetic and Genome Research 145 (3–4). April 2015. DOI:10.1159/000381292. с. 187–91.
  36. а б в Chromosome Numbers of Carnivorous Plants // Bulletin of the Torrey Botanical Club 96 (3). May 1969. DOI:10.2307/2483737. с. 322–328.
  37. Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae) // PLOS ONE 12 (2). 2017. DOI:10.1371/journal.pone.0170799. с. e0170799.
  38. Chromosome numbers of the 59 species of Eucalyptus L'Herit. (Myrtaceae). // Caryologia 59 (3). 2006. DOI:10.1080/00087114.2006.10797916. с. 207–212.
  39. Determination of inter- and intra-species genetic relationships among six Eucalyptus species based on inter-simple sequence repeats (ISSR) // Tree Physiology 25 (10). October 2005. DOI:10.1093/treephys/25.10.1295. с. 1295–302.
  40. Chromosomes of American Marsupials // Science 148 (3677). June 1965. DOI:10.1126/science.148.3677.1602. с. 1602–3.
  41. Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly // BMC Genomics 16 (1). January 2015. DOI:10.1186/s12864-014-1196-3. с. 4.
  42. Chromosome number, polyploidy, and growth habit in California weeds // American Journal of Botany 35 (3). March 1948. DOI:10.2307/2438241. с. 179–86.
  43. Chromosome numbers of some woody species from the Bulgarian flora // Phytologia Balcanica 13 (2). 2007. с. 205–207.
  44. Endogenous pararetroviral sequences in tomato (Solanum lycopersicum) and related species // BMC Plant Biology 7. May 2007. DOI:10.1186/1471-2229-7-24. с. 24.
  45. Biological Flora of the British Isles:Fagus sylvatica // Journal of Ecology 100 (6). 2012. DOI:10.1111/j.1365-2745.2012.02017.x. с. 1557–1608.
  46. Illustrated Flora of the Pacific States. Volume 3. Stanford University Press, 1951. с. 866.
  47. New Flora of the British Isles. Second. Cambridge, UK, 1997. с. 1130.
  48. Zaldoš V, Papeš D, Brown SC, Panaus O, Šiljak-Yakovlev S (1998) Genome size and base composition of seven Quercus species: inter- and intra-population variation. Genome, 41: 162–168.
  49. Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax? // BMC Genetics 17 (1). July 2016. DOI:10.1186/s12863-016-0408-z. с. 100.
  50. Evidence for integrity of parental genomes in the diploid hybridogenetic water frog Pelophylax esculentus by genomic in situ hybridization // Cytogenetic and Genome Research 134 (3). 2011. DOI:10.1159/000327716. с. 206–12.
  51. Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing // Scientific Reports 5. November 2015. DOI:10.1038/srep16413. с. 16413.
  52. а б Comparison of different cytogenetic methods and tissue suitability for the study of chromosomes in Cimex lectularius (Heteroptera, Cimicidae) // Comparative Cytogenetics 10 (4). 2016. DOI:10.3897/CompCytogen.v10i4.10681. с. 731–752.
  53. Analysis of male meiosis in seven species of Indian pill-millipede // Caryologia 39 (39). 1986. DOI:10.1080/00087114.1986.10797770. с. 89–101.
  54. Karyotype evolution of giraffes (Giraffa camelopardalis) revealed by cross-species chromosome painting with Chinese muntjac (Muntiacus reevesi) and human (Homo sapiens) paints // Cytogenetic and Genome Research 122 (2). 2008. DOI:10.1159/000163090. с. 132–8.
  55. The Molecular Cytogenetic Characterization of Pistachio (Pistacia vera L.) Suggests the Arrest of Recombination in the Largest Heteropycnotic Pair HC1 // PLOS ONE 10 (12). 2015. DOI:10.1371/journal.pone.0143861. с. e0143861.
  56. Genome sequence of the Japanese oak silk moth, Antheraea yamamai: the first draft genome in the family Saturniidae // GigaScience 7 (1). January 2018. DOI:10.1093/gigascience/gix113. с. 1–11.
  57. а б Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway // PLOS Biology 7 (10). October 2009. DOI:10.1371/journal.pbio.1000222. с. e1000222.
  58. Rubtsov, Nikolai B. The Fox Gene Map // ILAR 39 (2–3). 1 April 1998. DOI:10.1093/ilar.39.2-3.182. с. 182–188.
  59. Toward a molecular cytogenetic map for cultivated sunflower (Helianthus annuus L.) by landed BAC/BIBAC clones // G3 3 (1). January 2013. DOI:10.1534/g3.112.004846. с. 31–40.
  60. а б Metapress – Discover More // 24 June 2016.
  61. First detailed karyo-morphological analysis and molecular cytological study of leafy cardoon and globe artichoke, two multi-use Asteraceae crops // Comparative Cytogenetics 10 (3). 2016. DOI:10.3897/CompCytogen.v10i3.9469. с. 447–463.
  62. Comparison of leaf proteomes of cassava (Manihot esculenta Crantz) cultivar NZ199 diploid and autotetraploid genotypes // PLOS ONE 9 (4). 2014. DOI:10.1371/journal.pone.0085991. с. e85991.
  63. Chromosome painting shows that skunks (Mephitidae, Carnivora) have highly rearranged karyotypes // Chromosome Research 16 (8). 2008. DOI:10.1007/s10577-008-1270-2. с. 1215–31.
  64. A proposed new genus for Elaphe subocularis and Elaphe rosaliae. // The Snake 20 (1). 1988. с. 52–63. Архивиран от оригинала на 29 October 2014.
  65. "Chromosomes of Elaphe subocularis (Reptilia: Serpentes), with the description of an in vivo technique for preparation of snake chromosomes".
  66. The Jackson Laboratory Архив на оригинала от 2013-01-25 в Wayback Machine.: "Mice with chromosomal aberrations".
  67. а б Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers // Genome 48 (1). February 2005. DOI:10.1139/g04-089. с. 1–11.
  68. Effects of calorie restriction on chromosomal stability in rhesus monkeys (Macaca mulatta) // Age 29 (1). March 2007. DOI:10.1007/s11357-006-9016-6. с. 15–28.
  69. Rnor_6.0 - Assembly - NCBI
  70. Chromosome analysis of Linné, 1758 (Scyphozoa: Ulmaridae), southern Gulf of Mexico // Marine Biology Research 5 (4). July 2009. DOI:10.1080/17451000802534907. с. 399–403.
  71. Genetic diversity of arabica coffee (Coffea arabica L.) in Nicaragua as estimated by simple sequence repeat markers // TheScientificWorldJournal 2012. 2012. DOI:10.1100/2012/939820. с. 939820.
  72. Human Genome Project // National Center for Biotechnology Information. Посетен на 2009-04-29.
  73. Gallagher, D. S. и др. A karyotypic analysis of nilgai, Boselaphus tragocamelus (Artiodactyla: Bovidae) // Chromosome Research 6 (7). November 1998. DOI:10.1023/a:1009268917856. с. 505–513.
  74. The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion // eLife 5. November 2016. DOI:10.7554/eLife.20062.
  75. а б The tobacco genome sequence and its comparison with those of tomato and potato // Nature Communications 5. May 2014. DOI:10.1038/ncomms4833. с. 3833.
  76. а б Diversity of potato genetic resources // Breeding Science 65 (1). March 2015. DOI:10.1270/jsbbs.65.26. с. 26–40.
  77. Chromosome painting refines the history of genome evolution in hares and rabbits (order Lagomorpha) // Cytogenetic and Genome Research 96 (1–4). 2002. DOI:10.1159/000063034. с. 223–7.
  78. Rabbits, Hares and Pikas. Status Survey and Conservation Action Plan. с. 61–94. Архивиран от оригинала на 2011-05-05. Архив на оригинала от 2011-05-05 в Wayback Machine.
  79. Chromosome number of the chimpanzee, Pan troglodytes // Science 131 (3414). June 1960. DOI:10.1126/science.131.3414.1672. с. 1672–3.
  80. Zebrafish comparative genomics and the origins of vertebrate chromosomes // Genome Research 10 (12). December 2000. DOI:10.1101/gr.164800. с. 1890–902.
  81. Cytogenetic Karyotype Analysis in Selected Species of the Erinaceidae Family // Journal of Veterinary Research 63 (3). 2019. DOI:10.2478/jvetres-2019-0041. с. 353–358.
  82. Cytogenetic Karyotype Analysis in Selected Species of the Erinaceidae Family // Journal of Veterinary Research 63 (3). 2019. DOI:10.2478/jvetres-2019-0041. с. 353–358.
  83. Atlas of mammalian chromosomes. Hoboken, NJ, Wiley-Liss, 2006. ISBN 978-0-471-35015-6. с. 2.
  84. Genome analysis of the platypus reveals unique signatures of evolution // Nature 453 (7192). May 2008. DOI:10.1038/nature06936. с. 175–83.
  85. а б A high-density SSR genetic map constructed from a F2 population of Gossypium hirsutum and Gossypium darwinii // Gene 574 (2). December 2015. DOI:10.1016/j.gene.2015.08.022. с. 273–86.
  86. "Hyrax: The Little Brother of the Elephant", Wildlife on One, BBC TV.
  87. Atlas of Mammalian Chromosomes. John Wiley & sons, 2006. ISBN 978-0-471-35015-6. с. 78.
  88. а б A chromosome-banding study in the Finnish and the Japanese raccoon dog // Hereditas 105 (1). 1986. DOI:10.1111/j.1601-5223.1986.tb00647.x. с. 97–105.
  89. Genetics of the Dog. CABI, 1 January 2012. ISBN 978-1-84593-941-0. с. 250–.
  90. Analysis of some normal parameters of the spermiogram of captive capuchin monkeys (Cebus apella Linnaeus, 1758) // Brazilian Journal of Veterinary Research and Animal Science 39 (6). 2002. DOI:10.1590/S1413-95962002000600010.
  91. Peigler, Richard S. ["Wild silks of the world." American Entomologist 39.3 (1993): 151–162. https://doi.org/10.1093/ae/39.3.151
  92. Samia cynthia versus Bombyx mori: comparative gene mapping between a species with a low-number karyotype and the model species of Lepidoptera // Insect Biochemistry and Molecular Biology 41 (6). June 2011. DOI:10.1016/j.ibmb.2011.02.005. с. 370–7.
  93. Molecular phylogeny of silk-producing insects based on 16S ribosomal RNA and cytochrome oxidase subunit I genes // Journal of Genetics 85 (1). April 2006. DOI:10.1007/bf02728967. с. 31–8.
  94. The Bombyx mori karyotype and the assignment of linkage groups // Genetics 170 (2). June 2005. DOI:10.1534/genetics.104.040352. с. 675–85.
  95. а б Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae) // BMC Plant Biology 11. November 2011. DOI:10.1186/1471-2229-11-157. с. 157.
  96. Claro, Françoise и др. The R- and G-Banded Karyotypes of the Sable Antelope (Hippotragus niger) // Journal of Heredity 84 (6). November 1993. DOI:10.1093/oxfordjournals.jhered.a111376. с. 481–484.
  97. A multi-platform draft de novo genome assembly and comparative analysis for the Scarlet Macaw (Ara macao) // PLOS ONE 8 (5). 2013. DOI:10.1371/journal.pone.0062415. с. e62415.
  98. The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z // Genome Biology 8 (11). 2007. DOI:10.1186/gb-2007-8-11-r243. с. R243.
  99. The ancestral eutherian karyotype is present in Xenarthra // PLOS Genetics 2 (7). July 2006. DOI:10.1371/journal.pgen.0020109. с. e109.
  100. Chromosome painting in three species of buteoninae: a cytogenetic signature reinforces the monophyly of South American species // PLOS ONE 8 (7). 2013. DOI:10.1371/journal.pone.0070071. с. e70071.
  101. Chromosome Counts in the Varieties of SOLANUM TUBEROSUM and Allied Wild Species // Genetics 12 (1). January 1927. DOI:10.1093/genetics/12.1.84. с. 84–92.
  102. {{{title}}} // Journal of Systematics and Evolution 39 (5). September 2001. с. 433–442.
  103. Comparative chromosome painting of chicken autosomal paints 1-9 in nine different bird species // Cytogenetic and Genome Research 103 (1–2). 2003. DOI:10.1159/000076309. с. 173–84.
  104. Canis lupus familiaris (dog)
  105. Genomic instability and telomere fusion of canine osteosarcoma cells // PLOS ONE 7 (8). 2012. DOI:10.1371/journal.pone.0043355. с. e43355.
  106. Genome sequence, comparative analysis and haplotype structure of the domestic dog // Nature 438 (7069). December 2005. DOI:10.1038/nature04338. с. 803–19.
  107. A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the turkey and chicken genomes // BMC Genomics 11. November 2010. DOI:10.1186/1471-2164-11-647. с. 647.
  108. а б Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes // BMC Genomics 11. April 2010. DOI:10.1186/1471-2164-11-261. с. 261.
  109. Saccharum officinarum L. | Plants of the World Online | Kew Science // Посетен на 2017-07-02.
  110. Genetics, Genomics and Breeding of Sugarcane. CRC Press, 15 August 2010. ISBN 978-1-4398-4860-9. с. 70.
  111. Chromosomal uniformity in the avian subclass Carinatae // Chromosoma 15 (3). August 1964. DOI:10.1007/BF00321513. с. 280–8.
  112. Roslik, G.V. and Kryukov A. (2001). A Karyological Study of Some Corvine Birds (Corvidae, Aves). Russian Journal of Genetics 37(7):796-806. DOI: 10.1023/A:1016703127516
  113. Gregory, T.R. (2015). Animal Genome Size Database. http://www.genomesize.com/result_species.php?id=1701
  114. Akbarzadeh, M. и др. Can Knowledge of Genetic Distances, Genome Sizes and Chromosome Numbers Support Breeding Programs in Hardy Geraniums? // Genes 12 (5). 2021. DOI:10.3390/genes12050730. с. 730.
  115. а б On the highest chromosome number in mammals // Cytogenetics and Cell Genetics 49 (4). 1988. DOI:10.1159/000132683. с. 305–8.
  116. The Chromosome Number of the Persian Gulf Shrimp Penaeus semisulcatus // Iranian Int. J. Sci 5 (1). 2004. с. 13–23.
  117. Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes // Comparative Cytogenetics 8 (3). 2014. DOI:10.3897/CompCytogen.v8i3.7718. с. 233–48.
  118. Discovery of tetraploidy in a mammal // Nature 401 (6751). September 1999. DOI:10.1038/43815. с. 341.
  119. Molecular cytogenetics and allotetraploidy in the red vizcacha rat, Tympanoctomys barrerae (Rodentia, Octodontidae) // Genomics 88 (2). August 2006. DOI:10.1016/j.ygeno.2006.02.010. с. 214–21.
  120. The largest known chromosome number for a mammal, in a South American desert rodent // Experientia 46 (5). May 1990. DOI:10.1007/BF01954248. с. 506–8.
  121. Genomic organization of repetitive DNAs highlights chromosomal evolution in the genus Clarias (Clariidae, Siluriformes) // Molecular Cytogenetics 9. 2016. DOI:10.1186/s13039-016-0215-2. с. 4.
  122. Molecular cytogenetic differentiation of paralogs of Hox paralogs in duplicated and re-diploidized genome of the North American paddlefish (Polyodon spathula) // BMC Genetics 18 (1). March 2017. DOI:10.1186/s12863-017-0484-8. с. 19.
  123. Chromosome numbers of Polish ferns
  124. New chromosome number and cyto-molecular characterization of the African Baobab (Adansonia digitata L.) - "The Tree of Life" // Scientific Reports 10 (1). August 2020. DOI:10.1038/s41598-020-68697-6. с. 13174.
  125. Family Petromyzontidae – Northern lampreys
  126. Flora of North America Editorial Committee. Flora of North America. Missouri Botanical Garden, St. Louis, 1993.
  127. Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies // Nature 436 (7049). July 2005. DOI:10.1038/nature03704. с. 385–9.
  128. Morus nigra (black mulberry) // Посетен на 2020-08-29.
  129. Definition of Eight Mulberry Species in the Genus Morus by Internal Transcribed Spacer-Based Phylogeny // PLOS ONE 10 (8). 2015. DOI:10.1371/journal.pone.0135411. с. e0135411.
  130. а б The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms // Comparative Cytogenetics 9 (4). 2015. DOI:10.3897/CompCytogen.v9i4.5760. с. 683–90.
  131. The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms // Comparative Cytogenetics 9 (4). 2015-07-10. DOI:10.3897/compcytogen.v9i4.5760. с. 683–90.
  132. Occurrence of Various Cytotypes of Ophioglossum ReticulatumL. In a Population from N. E. India // Caryologia 32 (2). 1979. DOI:10.1080/00087114.1979.10796781. с. 135–146.
  133. DNA rearrangements directed by non-coding RNAs in ciliates // Wiley Interdisciplinary Reviews. RNA 1 (3). 2010. DOI:10.1002/wrna.34. с. 376–87.
  134. This Bizarre Organism Builds Itself a New Genome Every Time It Has Sex // 17 September 2014. Посетен на 1 June 2021.
  135. Origin, structure and function of millions of chromosomes present in the macronucleus of unicellular eukaryotic ciliate, Oxytricha trifallax: a model organism for transgenerationally programmed genome rearrangements // Journal of Genetics 94 (2). June 2015. DOI:10.1007/s12041-015-0504-2. с. 171–6.
  136. The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes // PLOS Biology 11 (1). 2013-01-29. DOI:10.1371/journal.pbio.1001473. с. e1001473.
  137. You Have 46 Chromosomes. This Pond Creature Has 15,600 // National Geographic. 6 February 2013. Архивиран от оригинала на 2013-02-08. Посетен на 2023-06-07.
  138. Evidence for an ancestral alphoid domain on the long arm of human chromosome 2 // Human Genetics 89 (2). May 1992. DOI:10.1007/BF00217134. с. 247–9.

Допълнителна литература[редактиране | редактиране на кода]

Външни препратки[редактиране | редактиране на кода]