Ванадий

от Уикипедия, свободната енциклопедия
Направо към навигацията Направо към търсенето
Ванадий
Ванадий – Синкав или сребристосив метал
Синкав или сребристосив метал
Спектрални линии на ванадий
TитанВанадийХром


V

Nb
Периодична система
Общи данни
Име, символ, Z Ванадий, V, 23
Група, период, блок 54d
Химическа серия преходен метал
Електронна конфигурация [Ar] 3d3 4s2
e- на енергийно ниво 2, 8, 11, 2
CAS номер 7440-62-2
Свойства на атома
Атомна маса 50,9415 u
Ковалентен радиус 153±8 pm
Степен на окисление 5, 4, 3, 2, 1, −1, −3
Оксид V2O5 (амфотерен)
Електроотрицателност
(Скала на Полинг)
1,63
Йонизационна енергия I: 650,9 kJ/mol
II: 1414 kJ/mol
III: 2830 kJ/mol
IV: 4507 kJ/mol
(още)
Физични свойства
Агрегатно състояние твърдо вещество
Кристална структура кубична обемноцентрирана
Плътност 6000 kg/m3
Температура на топене 2183 K (1910 °C)
Температура на кипене 3680 K (3407 °C)
Специф. топлина на топене 21,5 kJ/mol
Специф. топлина на изпарение 444 kJ/mol
Налягане на парата
P (Pa) 1 10 102 103 104 105
T (K) 2101 2289 2523 2814 3187 3679
Скорост на звука 4560 m/s при 20 °C
Специф. ел. съпротивление 0,197 Ω.mm2/m
Топлопроводимост 30,7 W/(m·K)
Магнетизъм парамагнитен
Модул на еластичност 128 GPa
Модул на срязване 47 GPa
Модул на свиваемост 160 GPa
Коефициент на Поасон 0,37
Твърдост по Моос 6,7
Твърдост по Викерс 628 – 640 MPa
Твърдост по Бринел 600 – 742 MPa
История
Откритие Андрес Мануел дел Рио (1801 г.)
Изолиране Нилс Габриел Сефстрьом
(1830 г.)
Най-дълготрайни изотопи
Изотоп ИР ПП ТР ПР
48V синт. 16 дни β+ 48Ti
49V синт. 330 дни ε 49Ti
50V 0,25 % 1,5×1017 г. ε 50Ti
β- 50Cr
51V 99,75 % стабилен

Ванадият е химически елемент. Открит е два пъти. През 1801 г. мексиканският минералог Андрес Мануел де Рио получил оксиди и соли на неизвестен елемент от мексиканския минерал Pb(VO2)3Cl, „кафяво олово“, по-късно наречен ванадинит. Оксидите и солите му имат различни цветове, поради което той му дал първоначално името „панхримиум“,[1] от гръцкото „всякакъв цвят“, а по-късно „еритрониум“, от гръцки – червен. Химиците обаче се усънимли в точността на неговите анализи, като някои твърдели, че това може да е елементът хром, а френският химик Колет-Дескотил анализирал пратената му проба от новия оксид и потвърдил този извод. Последвало отказване на Дел Рио от претенциите на откривател. В последствие е открит от Нилс Габриел Сефстрьом през 1830 в Швеция като примеси в желязна руда.

Ванадият никога не е открит в природата в чисто състояние, а само в някои минерали. Той е сребристо бял, твърд и ковък метал. Химически устойчив е, при висока температура лесно се съединява с кислород, азот и др. Ванадиевият пентаоксид (V2О5) се използва като катализатор в химическите производства.

История[редактиране | редактиране на кода]

През 1830 г. шведският химик Нилс Габриел Сефстрьом научава от металурзи, че получаваният от тях чугун се оказал с две различни характеристики по отношение на трошливостта му в зависимост от произхода на желязната руда. Той изолирал от шлаката на „доброкачествения“ чугун неизвестен червен прах и направил извода, че съдържа още неоткрит химичен елемент. Сефстрьом, възхитен от красотата на цветовете на съединенията на неоткрития елемент, го нарекъл „ванадиум“, в чест на скандинавската богиня на красотата и младостта Ванадис, и го означил с V.[1] В същата година, но малко по-късно, немският химик Фридрих Вьолер, използвайки мексиканската руда на дел Рио, потвърдил резултатите му и установил, че и той е получил елемента ванадий. И това не е било случайно – едни химици твърдели, че дел Рио е получил хром, а други – ванадий, тъй като рудата съдържала и двата елемента. Така за откриватели на ванадия се смятат и двамата – Дел Рио го е открил, а Сефстрьом го е преоткрил.

През 1876 г. английският химик Хенри Енфилд Роско първи изолира ванадия чрез водородна редукция на ванадиев дихлорид (VCl2), а през 1925 г. американските химици Джон Уесли Марден и Малкълм Н. Рич получават 99,7% чист метал чрез редукция на ванадиев пентаоксид (V2O5) с калций.

Физични свойства[редактиране | редактиране на кода]

В чист вид ванадият не е намерен в природата. Той се съдържа в различни минерали, въглища и в петрол и е на около 19-о място по разпространение в земната кора с 16×10-3% от земната маса.[1] Той е с номер 23 в периодичната таблица и е първият елемент от 5-а (IIIB) група, с атомно тегло 50,9415.

Елементът ванадий има два природни изотопа, които имат следното съотношение на Земята:[1] 50V – 0,25% и 51V – 99,75%. Установено е, че ванадий 51 е стабилен, а ванадий-50 е слабо радиоактивен, с период на полуразпад 1,4×1017 години (β+-разпад). Това е многократно повече от възрастта на Земята, поради което се смята за относително стабилен. Получени и изследвани са около 24 радиоактивни и 4 метастабилни (изомерни) състояния с масово число от 40 до 65, като по-дълготрайните (с период на полуразпад и вид на разпада) са 49V – 329 дни, електронен захват и 48V – 15,9735 дни, β+-разпад. Останалите изотопи имат периоди на полуразпад минути, секунди и части от секундата.

Ванадият е сребристосив, много твърд метал, с кубична обемноцентрична решетка, специфично тегло 6 g/cm3, температура на топене 1900 °C и на кипене 3407 °C. При температура от 5,03 K металът става свръхпроводник.[1]

Химични свойства[редактиране | редактиране на кода]

Ванадият е силно разсеян в руди на други метали. Като търговски източник на ванадий са: карнотит, ванадинит и патронит (V2S4). Освен това се използват сажди от изгарянето на някои видове нефт и въглища, богати на ванадий. При преработката на различните източници се получава като изходен продукт ванадиев пентаоксид, който след това се редуцира.

Ванадият се отличава с висока химическа устойчивост в морската вода и водните разтвори на минералните соли, сравнително устойчив е към действието на разредена солна киселина, не взаимодейства с разредена азотна и сярна киселина. Реагира с флуороводородна киселина, концентрирана азотна и сярна киселина, с царска вода.[1] Не взаимодейства с разредени основи, но в присъствието на въздух се окислява и образува ванадати. Кислородът се разтваря във ванадия, а разтворимостта му се увеличава с повишаване на температурата.

Оксидите, отговарящи на четирите окислителни състояния са: VO, V2O3, VO2, V2O5, но са известни и V4O7 и V5O9. С увеличаване на степента на окисление, се засилват киселинните свойства, а също и химическата устойчивост.[1] Моноксидът не се разтваря във вода, с разредени неорганични киселини образува соли(II) и е силен редуктор. Получава се чрез редуциране на V2O5 с водород при 1700 °C. Хидроксидът V(OH)2 се образува при действието на основа върху сол(II):

Оксидът V2O3 е антиферомагнетик, образува соли(III), силен редуктор, получава се от V2O5 чрез въглероден оксид, водород или сяра при нагряване. Хидроксидът, V(OH)3, се получава като се действа с основа или NH4OH на разтвори на соли(III) без достъп на въздух.

Диоксидът (VO2) на ванадия е антиферомагнит, хигроскопичен, амфотерен, с редукционни свойства.

Диванадиевият пентаоксид (V2O5) е с диамагнитни свойства, над 700 °C дисоциира. Той е полупроводник[1] от n-тип. Пентаоксидът е промеждутъчен продукт от производството на ферованадий, използва се като катализатор в производството на сярна киселина, компонент е в специални стъкла и глазури, а също и в луминофори на червено светене.

С азота над 700 °C ванадият образува нитрид (VN, жълти кристали), с въглерода и въглеродосъдържащи газове над 800 °C – карбиди (черни кристали, VC, като отношението C:V e 37:47% и никога 1:1[2]), с хлора – хлориди, с флуора – флуориди, с водорода образува твърди разтвори. С металите ванадият формира сплави и интерметални съединения.[1] Триванадиев галид (V3Ga) се използва като свръхпроводник (температура 16,8 K) за изготвяне на на намотки на соленоиди.[1]

Ванадиев диборид (VB2) е огнеупорен материал и компонент на високотемпературни сплави, а триванадиевият силицид (V3Si) е свръхпроводник при 17,2 K.

Образуват се ванадиев моносулфид (VS) и диванадиев пентасулфид (V2S5).

Приложение[редактиране | редактиране на кода]

Широко приложение ванадият намира в металургията, химическата промишленост и производството на викототемпературно обзавеждане. Като изходен продукт в черната металургия се използва ферованадий, съдържащ 35 – 85% ванадий. Добавен в стоманата, ванадият има два ефекта: премахва зърнеността на матрицата и изчиства въглеродното присъствие, като го формира в карбиди.[1] По този начин ванадиевата стомана е особено издръжлива и устойчива на удари и огъвания. Почти всички инструментални стомани съдържат ванадий, в количества от 0,10% до 5%. Той осигурява запазването на твърдостта и режещата способност на инструмента при високи температури, получаващ се при скоростно рязане на металите. В някои видове чугуни добавка на малки количества ванадий регулира размера и разпределението на графичните пукнатини за подобряване на здравината и съпротивлението на износване.

В цветната металургия ванадият заема важно място. Добавянето на няколко процента ванадий към алуминия го прави много твърд. Същото се отнася за златото, медта, никела и титана. Със среброто ванадият не се сплавя.[1]

Ванадиевите съединения (V2O5 и ванадатите) се използват като катализатори в контактния метод за производството на сярна киселина; като окислителни катализатори в синтеза на фталов и металинов анхидрид; в производството на полиамиди (найлони);[1] за окисление на органични вещества, като етанол към ацеталдехид и антрацен (C12H12) към антрахинон (C14H8O).

Физиологично действие[редактиране | редактиране на кода]

Установено е, че ванадият и неговите съединения въздействат токсично на човешкия организъм. Ванадият предизвиква възпалителни реакции на кожата, дихателните пътища на белите дробове, а също и нарушение на биологичните параметри на организма.[1] Нормалното съдържание в организма на човека е около 0,11 mg (за 70 kg). Токсичната доза е 0,25 mg, а леталната доза – от 2 до 4 mg. За някои дълбоководни животни концентрацията на ванадий в тъканната течност и кръвта достига до 10%.[1]

Източници[редактиране | редактиране на кода]

  1. а б в г д е ж з и к л м н о п Лефтеров, Димитър. Химичните елементи и техните изотопи. издателство на БАН „Проф. Марин Дринов“, 2015.
  2. Wilkinson, Cotton. Advanced Inorgamnic Chemistry. 4th. 1980. ISBN 0-471-02775-8. с. 12.